We present a method giving the sharp constants and optimal functions of all the Gagliardo–Nirenberg inequalities involving the -norm of the gradient. We show that the optimal functions can be explicitly derived from a specific non-linear ordinary differential equation which appears to be linear for a subclass of the Gagliardo–Nirenberg inequalities or when the space dimension reduces to 1. In these cases, we give the explicit expressions of the optimal functions, along with the sharp constants of the corresponding Gagliardo–Nirenberg inequalities. Our method extend to the -Gagliardo–Nirenberg and -Nash's inequalities, for all .
Nous présentons une méthode donnant les constantes et fonctions optimales de toutes les inégalités de Gagliardo–Nirenberg dépendant de la norme du gradient. Nous montrons que les fonctions optimales se calculent explicitement à partir d'une équation différentielle ordinaire nonlinéaire, qui devient linéaire pour une sous-classe de ces inégalités ou quand la dimension de l'espace est réduite a 1. Dans ces cas, nous obtenons explicitement les fonctions et constantes optimales des inégalités de Gagliardo–Nirenberg correspondantes. Notre méthode se généralise aux inégalités de Gagliardo–Nirenberg et de Nash dependant de la norme du gradient, pour tout .
Accepted:
Published online:
Martial Agueh 1
@article{CRMATH_2008__346_13-14_757_0, author = {Martial Agueh}, title = {Gagliardo{\textendash}Nirenberg inequalities involving the gradient $ {L}^{2}$-norm}, journal = {Comptes Rendus. Math\'ematique}, pages = {757--762}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.015}, language = {en}, }
Martial Agueh. Gagliardo–Nirenberg inequalities involving the gradient $ {L}^{2}$-norm. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 757-762. doi : 10.1016/j.crma.2008.05.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.015/
[1] Sharp Gagliardo–Nirenberg inequalities and Mass transport theory, J. Dynam. Differential Equations, Volume 18 (2006) no. 4, pp. 1069-1093
[2] M. Agueh, Sharp Gagliardo–Nirenberg inequalities via p-Laplacian type equations, Nonlinear Differential Equations, submitted for publication
[3] Geometric inequalities via a general comparison principle for interacting gases, Geom. Funct. Anal., Volume 14 (2004), pp. 215-244
[4] Sharp constant in Nash's inequality, Internat. Math. Res. Not., Volume 7 (1993), pp. 213-215
[5] A mass transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities, Adv. Math., Volume 182 (2004), pp. 307-332
[6] Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., Volume 90 (2002) no. 81, pp. 847-875
[7] Proprietà di alcune classi di funzioni più variabili, Ric. Mat., Volume 7 (1958), pp. 102-137
[8] An estimate for the best constant in a Sobolev inequality involving three integral norms, Ann. Mat. Pura Appl. (4), Volume 124 (1980), pp. 181-197
[9] On elliptic partial differential equations, Ann. Sc. Norm. Pisa, Volume 13 (1959), pp. 116-162
[10] Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 897-923
Cited by Sources:
Comments - Policy