Comptes Rendus
Differential Geometry
The length of a shortest geodesic loop
Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 763-765.

We give a lower bound for the length of a non-trivial geodesic loop on a simply-connected and compact manifold of even dimension with a non-reversible Finsler metric of positive flag curvature. Harris and Paternain use this estimate in their recent paper to give a geometric characterization of dynamically convex Finsler metrics on the 2-sphere.

On donne une borne inférieure pour la longueur d'un lacet géodésique non-triviale sur une variété compacte et simplement connexe munie d'une métrique de Finsler non-reversible de courbure positive. Harris et Paternain utilisent cette éstimée dans leur récent article afin de donner und charactérisation géométrique des métriques de Finsler à convexité dynamique sur la sphère de dimension 2.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.06.001

Hans-Bert Rademacher 1

1 Universität Leipzig, Mathematisches Institut, 04081 Leipzig, Germany
@article{CRMATH_2008__346_13-14_763_0,
     author = {Hans-Bert Rademacher},
     title = {The length of a shortest geodesic loop},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {763--765},
     publisher = {Elsevier},
     volume = {346},
     number = {13-14},
     year = {2008},
     doi = {10.1016/j.crma.2008.06.001},
     language = {en},
}
TY  - JOUR
AU  - Hans-Bert Rademacher
TI  - The length of a shortest geodesic loop
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 763
EP  - 765
VL  - 346
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2008.06.001
LA  - en
ID  - CRMATH_2008__346_13-14_763_0
ER  - 
%0 Journal Article
%A Hans-Bert Rademacher
%T The length of a shortest geodesic loop
%J Comptes Rendus. Mathématique
%D 2008
%P 763-765
%V 346
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2008.06.001
%G en
%F CRMATH_2008__346_13-14_763_0
Hans-Bert Rademacher. The length of a shortest geodesic loop. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 763-765. doi : 10.1016/j.crma.2008.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.06.001/

[1] A. Harris, G. Paternain, Dynamically convex Finsler metrics and J-holomorphic embedding of asymptotic cylinders, Ann. Global Anal. Geom., in press, | DOI

[2] H. Hofer; K. Wysocki; E. Zehnder The dynamics of three-dimensional strictly convex energy surfaces, Ann. Math. (2), Volume 148 (1998), pp. 197-289

[3] W. Klingenberg Contributions to Riemannian geometry in the large, Ann. Math. (2), Volume 69 (1959), pp. 654-666

[4] Y. Long Multiplicity and stability of closed geodesics on Finsler 2-spheres, J. Eur. Math. Soc., Volume 8 (2006), pp. 341-353

[5] H.B. Rademacher A Sphere Theorem for non-reversible Finsler metrics, Math. Ann., Volume 328 (2004), pp. 373-387

[6] H.B. Rademacher Non-reversible Finsler metrics of positive curvature (D. Bao; R. Bryant; S.S. Chern; Z. Shen, eds.), A Sampler of Riemann–Finsler Geometry, MSRI Series, vol. 50, Cambridge Univ. Press, 2004, pp. 261-302

[7] H.B. Rademacher Existence of closed geodesics on positively curved Finsler manifolds, Ergod. Theory Dynam. Systems, Volume 27 (2007), pp. 957-969

Cited by Sources:

Comments - Policy