We give a lower bound for the length of a non-trivial geodesic loop on a simply-connected and compact manifold of even dimension with a non-reversible Finsler metric of positive flag curvature. Harris and Paternain use this estimate in their recent paper to give a geometric characterization of dynamically convex Finsler metrics on the 2-sphere.
On donne une borne inférieure pour la longueur d'un lacet géodésique non-triviale sur une variété compacte et simplement connexe munie d'une métrique de Finsler non-reversible de courbure positive. Harris et Paternain utilisent cette éstimée dans leur récent article afin de donner und charactérisation géométrique des métriques de Finsler à convexité dynamique sur la sphère de dimension 2.
Accepted:
Published online:
Hans-Bert Rademacher 1
@article{CRMATH_2008__346_13-14_763_0, author = {Hans-Bert Rademacher}, title = {The length of a shortest geodesic loop}, journal = {Comptes Rendus. Math\'ematique}, pages = {763--765}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.06.001}, language = {en}, }
Hans-Bert Rademacher. The length of a shortest geodesic loop. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 763-765. doi : 10.1016/j.crma.2008.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.06.001/
[1] A. Harris, G. Paternain, Dynamically convex Finsler metrics and J-holomorphic embedding of asymptotic cylinders, Ann. Global Anal. Geom., in press, | DOI
[2] The dynamics of three-dimensional strictly convex energy surfaces, Ann. Math. (2), Volume 148 (1998), pp. 197-289
[3] Contributions to Riemannian geometry in the large, Ann. Math. (2), Volume 69 (1959), pp. 654-666
[4] Multiplicity and stability of closed geodesics on Finsler 2-spheres, J. Eur. Math. Soc., Volume 8 (2006), pp. 341-353
[5] A Sphere Theorem for non-reversible Finsler metrics, Math. Ann., Volume 328 (2004), pp. 373-387
[6] Non-reversible Finsler metrics of positive curvature (D. Bao; R. Bryant; S.S. Chern; Z. Shen, eds.), A Sampler of Riemann–Finsler Geometry, MSRI Series, vol. 50, Cambridge Univ. Press, 2004, pp. 261-302
[7] Existence of closed geodesics on positively curved Finsler manifolds, Ergod. Theory Dynam. Systems, Volume 27 (2007), pp. 957-969
Cited by Sources:
Comments - Policy