Nous considérons un électron non relativiste interagissant avec un champ magnétique classique dans la direction
We consider a non-relativistic electron interacting with a classical magnetic field pointing along the
Accepté le :
Publié le :
Laurent Amour 1 ; Jérémy Faupin 2 ; Benoît Grébert 3 ; Jean-Claude Guillot 4
@article{CRMATH_2008__346_19-20_1045_0, author = {Laurent Amour and J\'er\'emy Faupin and Beno{\^\i}t Gr\'ebert and Jean-Claude Guillot}, title = {Le probl\`eme infrarouge pour l'\'electron habill\'e non relativiste dans un champ magn\'etique}, journal = {Comptes Rendus. Math\'ematique}, pages = {1045--1050}, publisher = {Elsevier}, volume = {346}, number = {19-20}, year = {2008}, doi = {10.1016/j.crma.2008.09.015}, language = {fr}, }
TY - JOUR AU - Laurent Amour AU - Jérémy Faupin AU - Benoît Grébert AU - Jean-Claude Guillot TI - Le problème infrarouge pour l'électron habillé non relativiste dans un champ magnétique JO - Comptes Rendus. Mathématique PY - 2008 SP - 1045 EP - 1050 VL - 346 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2008.09.015 LA - fr ID - CRMATH_2008__346_19-20_1045_0 ER -
%0 Journal Article %A Laurent Amour %A Jérémy Faupin %A Benoît Grébert %A Jean-Claude Guillot %T Le problème infrarouge pour l'électron habillé non relativiste dans un champ magnétique %J Comptes Rendus. Mathématique %D 2008 %P 1045-1050 %V 346 %N 19-20 %I Elsevier %R 10.1016/j.crma.2008.09.015 %G fr %F CRMATH_2008__346_19-20_1045_0
Laurent Amour; Jérémy Faupin; Benoît Grébert; Jean-Claude Guillot. Le problème infrarouge pour l'électron habillé non relativiste dans un champ magnétique. Comptes Rendus. Mathématique, Volume 346 (2008) no. 19-20, pp. 1045-1050. doi : 10.1016/j.crma.2008.09.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.09.015/
[1] L. Amour, J. Faupin, B. Grébert, J.-C. Guillot, The infrared problem for the dressed mobile ions, in preparation
[2] The dressed mobile atoms and ions, J. Math. Pures Appl. (9), Volume 86 (2006) no. 3, pp. 177-200
[3] The dressed nonrelativistic electron in a magnetic field, Math. Methods Appl. Sci., Volume 29 (2006) no. 10, pp. 1121-1146
[4] Ground state of the massless Nelson model without infrared cutoff in a non-Fock representation, Rev. Math. Phys., Volume 13 (2001) no. 9, pp. 1075-1094
[5] Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., Volume 45 (1978) no. 4, pp. 847-883
[6] The renormalized electron mass in non-relativistic quantum electrodynamics, J. Funct. Anal., Volume 243 (2007) no. 2, pp. 426-535
[7] Infrared renormalization in non-relativistic qed and scaling criticality, J. Funct. Anal. (2008) | DOI
[8] Infraparticle scattering states in non-relativistic QED II. Mass shell properties, 2007 (arxiv.org) | arXiv
[9] Coherent infrared representations in non-relativistic QED, Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday, Proc. Sympos. Pure Math., vol. 76, Amer. Math. Soc., Providence, RI, 2007, pp. 25-45
[10] Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians, Rev. Math. Phys., Volume 11 (1999) no. 4, pp. 383-450
[11] Scattering theory of infrared divergent Pauli–Fierz Hamiltonians, Ann. Henri Poincaré, Volume 5 (2004) no. 3, pp. 523-577
[12] Ground states in non-relativistic quantum electrodynamics, Invent. Math., Volume 145 (2001) no. 3, pp. 557-595
[13] Absence of ground states for a class of translation invariant models of non-relativistic QED, 2007 (arxiv.org) | arXiv
[14] Asymptotics distribution of eigenvalues for Pauli operators with non-constant magnetic fields, Duke Math. J., Volume 93 (1998), pp. 535-574
[15] Lowest energy states in nonrelativistic QED: atoms and ions in motion, J. Funct. Anal., Volume 243 (2007) no. 2, pp. 353-393
[16] Existence and non existence of a ground state for the massless Nelson model under binding condition, 2006 (preprint, arxiv.org) | arXiv
[17] One-particle (improper) states in Nelson's massless model, Ann. Henri Poincaré, Volume 4 (2003) no. 3, pp. 439-486
[18] Eigenvalue asymptotics for the Pauli operator in strong non-constant magnetic fields, Ann. Inst. Fourier, Volume 49 (1999), pp. 1603-1636
[19] On the Lieb–Thirring estimates for the Pauli operator, Duke Math. J., Volume 82 (1996) no. 3, pp. 607-635
Cité par Sources :
Commentaires - Politique