Comptes Rendus
Optimal Control
Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels
[Stabilité exponentielle et polynômiale pour une équation des ondes par un feedback frontière mémoire avec noyau singulier]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, pp. 277-282.

On étudie le problème de la stabilisation d'une équation des ondes par un feedback frontière avec mémoire. Le noyau du feedback est supposé singulier. Dans le cas où le feedback est à la fois frictionnel et avec mémoire, on démontre que l'énergie des solutions décroît exponentiellement. Dans le cas où le feedback est seulement de type mémoire, on montre dans cette Note que l'énergie des solutions décroît polynômialement. Le résultat repose sur l'utilisation d'énergies d'ordre plus élevé (cf. [F. Alabau-Boussouira, J. Prüss, R. Zacher, Exponential and polynomial stabilization of wave equations subjected to boundary-memory dissipation with singular kernels, in preparation ; F. Alabau, Stabilisation frontière indirecte de systèmes faiblement couplés, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1015–1020 ; F. Alabau, P. Cannarsa, V. Komornik, Indirect internal damping of coupled systems, J. Evolution Equations 2 (2002) 127–150 ; F. Alabau, Indirect boundary stabilization of weakly coupled systems, SIAM J. Control Optim. 41 (2002) 511–541]) la méthode des multiplicateurs et les propriétés d'une large classe de noyaux singuliers (cf. [V. Vergara, R. Zacher, Lyapunov functions and convergence to steady state for differential equations of fractional order, Math. Z. 259 (2008) 287–309 ; R. Zacher, Convergence to equilibrium for second order differential equations with weak damping of memory type, preprint.]). De plus, notre méthode peut être étendue pour traiter des cas de noyaux non singuliers.

This work is concerned with stabilization of a wave equation stabilized by a boundary feedback. When the feedback is both frictional and with memory, we prove exponential stability of the solutions. In case of a boundary feedback which is only of memory type, uniform stability is not expected. We prove in this latter case, that the solutions decay polynomially. The method is new and uses the method of higher order energies (see [F. Alabau-Boussouira, J. Prüss, R. Zacher, Exponential and polynomial stabilization of wave equations subjected to boundary-memory dissipation with singular kernels, in preparation; F. Alabau, Stabilisation frontière indirecte de systèmes faiblement couplés, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1015–1020; F. Alabau, P. Cannarsa, V. Komornik, Indirect internal damping of coupled systems, J. Evolution Equations 2 (2002) 127–150; F. Alabau, Indirect boundary stabilization of weakly coupled systems, SIAM J. Control Optim. 41 (2002) 511–541]), the multiplier method and the properties of a large class of singular kernels. Moreover, our method can be extended to include cases of nonsingular kernels (see [V. Vergara, R. Zacher, Lyapunov functions and convergence to steady state for differential equations of fractional order, Math. Z. 259 (2008) 287–309; R. Zacher, Convergence to equilibrium for second order differential equations with weak damping of memory type, preprint.]).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.01.005

Fatiha Alabau-Boussouira 1 ; Jan Prüss 2 ; Rico Zacher 2

1 Projet INRIA CORIDA et L.M.A.M., CNRS-UMR 7122, Université de Metz, Ile du Saulcy, 57045 Metz cedex 01, France
2 Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, Theodor-Lieser Strasse 5, 06120 Halle, Germany
@article{CRMATH_2009__347_5-6_277_0,
     author = {Fatiha Alabau-Boussouira and Jan Pr\"uss and Rico Zacher},
     title = {Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {277--282},
     publisher = {Elsevier},
     volume = {347},
     number = {5-6},
     year = {2009},
     doi = {10.1016/j.crma.2009.01.005},
     language = {en},
}
TY  - JOUR
AU  - Fatiha Alabau-Boussouira
AU  - Jan Prüss
AU  - Rico Zacher
TI  - Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 277
EP  - 282
VL  - 347
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2009.01.005
LA  - en
ID  - CRMATH_2009__347_5-6_277_0
ER  - 
%0 Journal Article
%A Fatiha Alabau-Boussouira
%A Jan Prüss
%A Rico Zacher
%T Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels
%J Comptes Rendus. Mathématique
%D 2009
%P 277-282
%V 347
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2009.01.005
%G en
%F CRMATH_2009__347_5-6_277_0
Fatiha Alabau-Boussouira; Jan Prüss; Rico Zacher. Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels. Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, pp. 277-282. doi : 10.1016/j.crma.2009.01.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.01.005/

[1] F. Alabau Stabilisation frontière indirecte de systèmes faiblement couplés, C. R. Acad. Sci. Paris Sér. I Math., Volume 328 (1999), pp. 1015-1020

[2] F. Alabau Indirect boundary stabilization of weakly coupled systems, SIAM J. Control Optim., Volume 41 (2002), pp. 511-541

[3] F. Alabau; P. Cannarsa; V. Komornik Indirect internal damping of coupled systems, J. Evolution Equations, Volume 2 (2002), pp. 127-150

[4] F. Alabau-Boussouira Asymptotic stability of wave equations with memory and frictional boundary dampings, Appl. Math., Volume 35 (2008) no. 3, pp. 247-258

[5] F. Alabau-Boussouira; P. Cannarsa; D. Sforza Decay estimates for second order evolution equations with memory, J. Funct. Anal., Volume 254 (2008), pp. 1342-1372

[6] F. Alabau-Boussouira, J. Prüss, R. Zacher, Exponential and polynomial stabilization of wave equations subjected to boundary-memory dissipation with singular kernels, in preparation

[7] P. Cannarsa; D. Sforza An existence result for semilinear equations in viscoelasticity: the case of regular kernels (M. Fabrizio; B. Lazzari; A. Morro, eds.), Mathematical Models and Methods for Smart Materials, Series on Advances in Mathematics for Applied Sciences, vol. 62, World Scientific, 2002, pp. 343-354

[8] M.M. Cavalcanti; H.P. Oquendo Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., Volume 42 (2003), pp. 1310-1324

[9] C.M. Dafermos Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., Volume 37 (1970), pp. 297-308

[10] C.M. Dafermos An abstract Volterra equation with applications to linear viscoelasticity, J. Differential Equations, Volume 7 (1970), pp. 554-569

[11] M. Fabrizio; B. Lazzari On the existence and the asymptotic stability of solutions for linearly viscoelastic solids, Arch. Rational Mech. Anal., Volume 116 (1991), pp. 139-152

[12] S. Gatti; M. Grasselli; V. Pata Lyapunov functionals for reaction–diffusion equations with memory, Math. Methods Appl. Sci., Volume 28 (2005), pp. 1725-1735

[13] V. Komornik Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris, 1994 (John Wiley and Sons, Ltd., Chichester)

[14] J.-L. Lions Contrôlabilité Exacte et Stabilisation de Systèmes Distribués I–II, Masson, Paris, 1988

[15] J.E. Muñoz Rivera Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math., Volume 52 (1994), pp. 628-648

[16] J.E. Muñoz Rivera; A. Peres Salvatierra Asymptotic behaviour of the energy in partially viscoelastic materials, Quart. Appl. Math., Volume 59 (2001), pp. 557-578

[17] G. Propst; J. Prüss On wave equations with boundary dissipation of memory type, J. Integral Equations Appl., Volume 8 (1996), pp. 99-123

[18] J. Prüss Evolutionary Integral Equations and Applications, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993

[19] V. Vergara; R. Zacher Lyapunov functions and convergence to steady state for differential equations of fractional order, Math. Z., Volume 259 (2008), pp. 287-309

[20] R. Zacher, Convergence to equilibrium for second order differential equations with weak damping of memory type, preprint

[21] R. Zacher Maximal regularity of type Lp for abstract parabolic Volterra equations, J. Evolution Equations, Volume 5 (2005), pp. 79-103

[22] R. Zacher, Quasilinear parabolic problems with nonlinear boundary conditions, Thesis, Martin-Luther-Universität Halle, 2003

  • Mohamed Berbiche Exponential decay of solutions to an inertial model for a wave equation with viscoelastic damping and time varying delay, Quaestiones Mathematicae, Volume 47 (2024) no. 6, p. 1271 | DOI:10.2989/16073606.2024.2320443
  • Yi Cheng; Bao‐Zhu Guo; Yuhu Wu Boundary stabilization for axially moving Kirchhoff string under fractional PI control, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 102 (2022) no. 6 | DOI:10.1002/zamm.202100524
  • Mohamed Berbiche Energy Decay Estimates of Solutions for Viscoelastic Damped Wave Equations in Rn, Bulletin of the Malaysian Mathematical Sciences Society, Volume 44 (2021) no. 5, p. 3175 | DOI:10.1007/s40840-021-01097-9
  • Radhouane Aounallah; Salah Boulaaras; Abderrahmane Zarai; Bahri Cherif General decay and blow up of solution for a nonlinear wave equation with a fractional boundary damping, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 12, p. 7175 | DOI:10.1002/mma.6455
  • Tae Gab Ha Energy decay rates for solutions of the Kirchhoff type wave equation with boundary damping and source terms, Journal of Integral Equations and Applications, Volume 30 (2018) no. 3 | DOI:10.1216/jie-2018-30-3-377
  • D. A. Zakora Exponential Stability of a Certain Semigroup and Applications, Mathematical Notes, Volume 103 (2018) no. 5-6, p. 745 | DOI:10.1134/s0001434618050073
  • Dmitry Aleksandrovich Zakora Экспоненциальная устойчивость одной полугруппы и приложения, Математические заметки, Volume 103 (2018) no. 5, p. 702 | DOI:10.4213/mzm11703
  • David Seifert A Katznelson–Tzafriri Theorem for Measures, Integral Equations and Operator Theory, Volume 81 (2015) no. 2, p. 255 | DOI:10.1007/s00020-014-2186-1
  • Jum-Ran KANG General decay for a differential inclusion of Kirchhoff type with a memory condition at the boundary, Acta Mathematica Scientia, Volume 34 (2014) no. 3, p. 729 | DOI:10.1016/s0252-9602(14)60044-8
  • Su-Young Shin; Jum-Ran Kang General Decay for the Degenerate Equation with a Memory Condition at the Boundary, Abstract and Applied Analysis, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/682061
  • Hassan Yassine Well-posedness and asymptotic behavior of a nonautonomous, semilinear hyperbolic-parabolic equation with dynamical boundary condition of memory type, Journal of Integral Equations and Applications, Volume 25 (2013) no. 4 | DOI:10.1216/jie-2013-25-4-517
  • Jum‐Ran Kang Energy decay rates for a hyperbolic differential inclusion with viscoelastic boundary conditions, Mathematical Methods in the Applied Sciences, Volume 36 (2013) no. 13, p. 1805 | DOI:10.1002/mma.2726
  • Fatiha Alabau-Boussouira On Some Recent Advances on Stabilization for Hyperbolic Equations, Control of Partial Differential Equations, Volume 2048 (2012), p. 1 | DOI:10.1007/978-3-642-27893-8_1
  • Piermarco Cannarsa; Daniela Sforza Integro-differential equations of hyperbolic type with positive definite kernels, Journal of Differential Equations, Volume 250 (2011) no. 12, p. 4289 | DOI:10.1016/j.jde.2011.03.005
  • W. Desch; E. Fašangová; J. Milota; G. Propst Stabilization through viscoelastic boundary damping: a semigroup approach, Semigroup Forum, Volume 80 (2010) no. 3, p. 405 | DOI:10.1007/s00233-009-9197-2

Cité par 15 documents. Sources : Crossref

Commentaires - Politique