Comptes Rendus
Geometry
An almost paracontact structure on a Rizza manifold
[Structure presque-paracontacte sur une variété de Rizza]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 683-686.

On construit une classe de structures repérées sur lʼespace tangent marqué dʼune variété de Rizza. On démontre que cette classe induit une métrique presque-paracontacte sur lʼespace fibré de lʼindicatrice.

We construct a class of framed f(3,1)-structure on the slit tangent space of a Rizza manifold. In the special case, we show that this class induces on the indicatrix bundle an almost paracontact metric structure.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.06.005

Esmaeil Peyghan 1 ; Leila Nourmohammadi Far 1

1 Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
@article{CRMATH_2011__349_11-12_683_0,
     author = {Esmaeil Peyghan and Leila Nourmohammadi Far},
     title = {An almost paracontact structure on a {Rizza} manifold},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {683--686},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.005},
     language = {en},
}
TY  - JOUR
AU  - Esmaeil Peyghan
AU  - Leila Nourmohammadi Far
TI  - An almost paracontact structure on a Rizza manifold
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 683
EP  - 686
VL  - 349
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2011.06.005
LA  - en
ID  - CRMATH_2011__349_11-12_683_0
ER  - 
%0 Journal Article
%A Esmaeil Peyghan
%A Leila Nourmohammadi Far
%T An almost paracontact structure on a Rizza manifold
%J Comptes Rendus. Mathématique
%D 2011
%P 683-686
%V 349
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2011.06.005
%G en
%F CRMATH_2011__349_11-12_683_0
Esmaeil Peyghan; Leila Nourmohammadi Far. An almost paracontact structure on a Rizza manifold. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 683-686. doi : 10.1016/j.crma.2011.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.005/

[1] E. Heil A relation between Finslerian and Hermitian metrics, Tensor (N.S.), Volume 16 (1965), pp. 1-3

[2] Y. Ichijyō Kählerian Finsler manifold, J. Math. Tokushima Univ., Volume 28 (1994), pp. 19-27

[3] Y. Ichijyō Almost Hermitian Finsler manifolds and nonlinear connections, Conf. Semin. Mat. Univ. Bari, vol. 215, 1986, pp. 1-13

[4] N. Lee On the special Finsler metric, Bull. Korean Math. Soc., Volume 40 (2003), pp. 457-464

[5] N. Lee; D.Y. Won Lichnerowicz connections in almost complex Finsler manifold, Bull. Korean Math. Soc., Volume 42 (2005), pp. 405-413

[6] G.B. Rizza Strutture di Finsler sulle varieta quasi complesse, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, Volume 33 (1962), pp. 271-275

[7] D.Y. Won; N. Lee Connections on almost complex Finsler manifolds and Kobayashi Hyperbolicity, J. Korean Math. Soc., Volume 44 (2007), pp. 237-247

Cité par Sources :

Commentaires - Politique