Comptes Rendus
Partial Differential Equations/Optimal Control
Indirect controllability of locally coupled systems under geometric conditions
Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 395-400.

We consider systems of two wave/heat/Schrödinger-type equations coupled by a zero order term, only one of them being controlled. We prove an internal and a boundary null-controllability result in any space dimension, provided that both the coupling and the control regions satisfy the Geometric Control Condition. This includes several examples in which these two regions have an empty intersection.

On sʼintéresse à des systèmes constitués de deux équations dʼondes, de la chaleur ou de Schrödinger, couplées par un terme dʼordre zéro, et dont seulement lʼune est controlée. En supposant que les zones de couplage et de contrôle satisfont toutes deux la Condition Géométrique de Contrôle, on montre un résultat de contrôle interne et frontière en dimension quelconque dʼespace. Ceci fournit de nombreux exemples pour lesquels ces deux régions ne sʼintersectent pas.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.02.004

Fatiha Alabau-Boussouira 1; Matthieu Léautaud 2, 3, 4

1 Université Paul Verlaine-Metz, Metz Cedex 1, France
2 Université Pierre-et-Marie-Curie, Paris 6, UMR 7598, Laboratoire Jacques-Louis-Lions, 75005 Paris, France
3 CNRS, UMR 7598 LJLL, 75005 Paris, France
4 Laboratoire POEMS, INRIA Paris-Rocquencourt/ENSTA, CNRS UMR 2706, 78153 Le Chesnay, France
@article{CRMATH_2011__349_7-8_395_0,
     author = {Fatiha Alabau-Boussouira and Matthieu L\'eautaud},
     title = {Indirect controllability of locally coupled systems under geometric conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {395--400},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.02.004},
     language = {en},
}
TY  - JOUR
AU  - Fatiha Alabau-Boussouira
AU  - Matthieu Léautaud
TI  - Indirect controllability of locally coupled systems under geometric conditions
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 395
EP  - 400
VL  - 349
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2011.02.004
LA  - en
ID  - CRMATH_2011__349_7-8_395_0
ER  - 
%0 Journal Article
%A Fatiha Alabau-Boussouira
%A Matthieu Léautaud
%T Indirect controllability of locally coupled systems under geometric conditions
%J Comptes Rendus. Mathématique
%D 2011
%P 395-400
%V 349
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2011.02.004
%G en
%F CRMATH_2011__349_7-8_395_0
Fatiha Alabau-Boussouira; Matthieu Léautaud. Indirect controllability of locally coupled systems under geometric conditions. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 395-400. doi : 10.1016/j.crma.2011.02.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.02.004/

[1] F. Alabau-Boussouira Indirect boundary stabilization of weakly coupled systems, SIAM J. Control Optim., Volume 41 (2002), pp. 511-541

[2] F. Alabau-Boussouira A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM J. Control Optim., Volume 42 (2003), pp. 871-906

[3] F. Alabau-Boussouira, M. Léautaud, Indirect stabilization of locally coupled wave-type systems, ESAIM Control Optim. Calc. Var. (2011), in press.

[4] F. Ammar-Khodja; A. Benabdallah; C. Dupaix Null controllability of some reaction–diffusion systems with one control force, J. Math. Anal. Appl., Volume 320 (2006), pp. 928-943

[5] C. Bardos; G. Lebeau; J. Rauch Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065

[6] L. de Teresa Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, Volume 25 (2000), pp. 39-72

[7] E. Fernández-Cara; M. González-Burgos; L. de Teresa Boundary controllability of parabolic coupled equations, J. Funct. Anal., Volume 259 (2010) no. 7, pp. 1720-1758

[8] M. González-Burgos; R. Pérez-García Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptot. Anal., Volume 46 (2006), pp. 123-162

[9] O. Kavian; L. de Teresa Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., Volume 16 (2010) no. 2, pp. 247-274

[10] M. Léautaud Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems, J. Funct. Anal., Volume 258 (2010), pp. 2739-2778

[11] J.-L. Lions Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Recherches en Mathématiques Appliquées, vol. 8, Masson, Paris, 1988

[12] L. Miller Controllability cost of conservative systems: resolvent condition and transmutation, J. Funct. Anal., Volume 218 (2005) no. 2, pp. 425-444

[13] L. Miller The control transmutation method and the cost of fast controls, SIAM J. Control Optim., Volume 45 (2006) no. 2, pp. 762-772

[14] K.-D. Phung Observability and control of Schrödinger equations, SIAM J. Control Optim., Volume 40 (2001) no. 1, pp. 211-230

[15] L. Rosier; L. de Teresa Exact controllability of a cascade system of conservative equations, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 5–6, pp. 291-296

[16] D.L. Russell A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Stud. Appl. Math., Volume 52 (1973), pp. 189-221

Cited by Sources:

Comments - Policy