Comptes Rendus
Analyse mathématique/Équations aux dérivées partielles
Stabilisation frontière indirecte du système de Timoshenko
[Indirect boundary stabilization of the Timoshenko system]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 379-384.

In this Note, we study the indirect boundary stabilization of the Timoshenko system with only one dissipation law. Under the equal speed wave propagation condition, we establish the exponential stability of the system. On the contrary, we show that the decay rate is polynomial.

Nous étudions la stabilité frontière indirecte du système de Timoshenko sous lʼaction dʼune seule loi de dissipation. Sous la condition dʼégalité des vitesses de propagation, nous établissons la stabilité exponentielle du système. Dans le cas contraire, nous montrons que le taux de décroissance est polynomial.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.03.011
Maya Bassam 1, 2; Denis Mercier 1; Serge Nicaise 1; Ali Wehbe 2

1 Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, institut des sciences et techniques, 59313 Valenciennes cedex 9, France
2 Université Libanaise, faculté des sciences 1 & Hadath, Beyrouth, Liban
@article{CRMATH_2011__349_7-8_379_0,
     author = {Maya Bassam and Denis Mercier and Serge Nicaise and Ali Wehbe},
     title = {Stabilisation fronti\`ere indirecte du syst\`eme de {Timoshenko}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {379--384},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.011},
     language = {fr},
}
TY  - JOUR
AU  - Maya Bassam
AU  - Denis Mercier
AU  - Serge Nicaise
AU  - Ali Wehbe
TI  - Stabilisation frontière indirecte du système de Timoshenko
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 379
EP  - 384
VL  - 349
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2011.03.011
LA  - fr
ID  - CRMATH_2011__349_7-8_379_0
ER  - 
%0 Journal Article
%A Maya Bassam
%A Denis Mercier
%A Serge Nicaise
%A Ali Wehbe
%T Stabilisation frontière indirecte du système de Timoshenko
%J Comptes Rendus. Mathématique
%D 2011
%P 379-384
%V 349
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2011.03.011
%G fr
%F CRMATH_2011__349_7-8_379_0
Maya Bassam; Denis Mercier; Serge Nicaise; Ali Wehbe. Stabilisation frontière indirecte du système de Timoshenko. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 379-384. doi : 10.1016/j.crma.2011.03.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.03.011/

[1] F. Alabau Stabilisation frontière indirecte de systèmes faiblement couplés, C. R. Acad. Sci. Paris Sér. I Math., Volume 328 (1999) no. 11, pp. 1015-1020

[2] F. Alabau-Boussouira Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim., Volume 41 (2002) no. 2, pp. 511-541

[3] F. Ammar-Khodja; S. Kerbal; A. Soufyane Stabilization of the nonuniform Timoshenko beam, J. Math. Anal. Appl., Volume 327 (2007), pp. 525-538

[4] C.J.K. Batty; T. Duyckaerts Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., Volume 8 (2008) no. 4, pp. 765-780

[5] C. Benchimol A note on weak stabilization of contraction semi-groups, SIAM J. Control Optim., Volume 16 (1978), pp. 373-379

[6] A. Borichev; Y. Tomilov Optimal polynomial decay of functions and operator semigroups, Math. Ann., Volume 347 (2010) no. 2, pp. 455-478

[7] F.L. Huang Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Ann. of Diff. Eqs., Volume 1 (1985), pp. 43-56

[8] J.U. Kim; Y. Renardy Boundary control of the Timoshenko beam, SIAM J. Control Optim., Volume 25 (1987) no. 6, pp. 1417-1429

[9] Z. Liu; B. Rao Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., Volume 56 (2005) no. 4, pp. 630-644

[10] J. Prüss On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., Volume 284 (1984), pp. 847-857

[11] D.L. Russell A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., Volume 173 (1993) no. 2, pp. 339-358

[12] A. Soufyane; A. Wehbe Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equation, Volume 2003 (2003), pp. 1-14

Cited by Sources:

Comments - Policy


Articles of potential interest

A general method for proving sharp energy decay rates for memory-dissipative evolution equations

Fatiha Alabau-Boussouira; Piermarco Cannarsa

C. R. Math (2009)


Optimal control for a Timoshenko beam

Michail I. Zelikin; Larissa A. Manita

C. R. Méca (2006)