[Directional regularity criteria]
We characterize pointwise directional regularity by highly oriented multi-scaled wavelet coefficients.
On obtient une caractérisation de la régularité ponctuelle directionnelle par une condition sur les modules des coefficients dʼondelettes multi-échelles et multi-orientées.
Accepted:
Published online:
Hnia Ben Braiek 1, 2; Mourad Ben Slimane 3
@article{CRMATH_2011__349_7-8_385_0, author = {Hnia Ben Braiek and Mourad Ben Slimane}, title = {Crit\`ere de r\'egularit\'e directionnelle}, journal = {Comptes Rendus. Math\'ematique}, pages = {385--389}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.01.030}, language = {fr}, }
Hnia Ben Braiek; Mourad Ben Slimane. Critère de régularité directionnelle. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 385-389. doi : 10.1016/j.crma.2011.01.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.030/
[1] Wavelet-based multifractal formalism: applications to DNA sequences, satellite images of the cloud structure and stock market data (A. Bunde; J. Kropp; H.J. Schellnhuber, eds.), The Science of Disasters, Springer, 2002, pp. 27-102
[2] Multifractal formalism and anisotropic self-similar functions, Math. Proc. Cambridge Philos. Soc., Volume 124 (1998), pp. 329-363
[3] Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., Volume 41 (1988), pp. 909-996
[4] Pointwise and directional regularity of nonharmonic Fourier series, Appl. Comput. Harmon. Anal., Volume 28 (2010), pp. 251-266
[5] Ondelettes et bases hilbertiennes, Rev. Mat. Iberoam., Volume 1 (1986), pp. 1-8
[6] Wavelet bases in anisotropic function spaces, Milovy, 2004, Math. Inst. Acad. Sci. Czech Republic, Prague (2005), pp. 370-387
[7] Theory of Function Spaces III, Monographs in Mathematics, vol. 78, Birkhäuser, Basel, 2006
Cited by Sources:
Comments - Policy