In this Note, we improve the estimate in Ohsawaʼs generalization of the Ohsawa–Takegoshi extension theorem for holomorphic functions by finding a smaller constant, and apply the result to the Suita conjecture. We also present a remark allowing to generalize the Ohsawa–Takegoshi extension theorem to the case of -closed smooth -forms. Finally, we prove that the twist factor in the twisted Bochner–Kodaira identity can be a non-smooth plurisuperharmonic function.
Dans cette Note, nous améliorons lʼestimation des constantes dans la généralisation par Ohsawa du théorème dʼextension de Ohsawa–Takegoshi concernant les fonctions holomorphes, et nous appliquons ce résultat à lʼétude de la conjecture de Suita. Nous présentons également une remarque permettant de généraliser le théorème dʼextension de Ohsawa–Takegoshi au cas des -formes lisses -fermées. Enfin, nous montrons que le facteur tordu dans lʼidentité tordue de Bochner–Kodaira peut être une fonction plurisuperharmonique non lisse.
Accepted:
Published online:
Qiʼan Guan 1; Xiangyu Zhou 2; Langfeng Zhu 1
@article{CRMATH_2011__349_13-14_797_0, author = {Qi'an Guan and Xiangyu Zhou and Langfeng Zhu}, title = {On the {Ohsawa{\textendash}Takegoshi} $ {L}^{2}$ extension theorem and the twisted {Bochner{\textendash}Kodaira} identity}, journal = {Comptes Rendus. Math\'ematique}, pages = {797--800}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.06.001}, language = {en}, }
TY - JOUR AU - Qiʼan Guan AU - Xiangyu Zhou AU - Langfeng Zhu TI - On the Ohsawa–Takegoshi $ {L}^{2}$ extension theorem and the twisted Bochner–Kodaira identity JO - Comptes Rendus. Mathématique PY - 2011 SP - 797 EP - 800 VL - 349 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2011.06.001 LA - en ID - CRMATH_2011__349_13-14_797_0 ER -
%0 Journal Article %A Qiʼan Guan %A Xiangyu Zhou %A Langfeng Zhu %T On the Ohsawa–Takegoshi $ {L}^{2}$ extension theorem and the twisted Bochner–Kodaira identity %J Comptes Rendus. Mathématique %D 2011 %P 797-800 %V 349 %N 13-14 %I Elsevier %R 10.1016/j.crma.2011.06.001 %G en %F CRMATH_2011__349_13-14_797_0
Qiʼan Guan; Xiangyu Zhou; Langfeng Zhu. On the Ohsawa–Takegoshi $ {L}^{2}$ extension theorem and the twisted Bochner–Kodaira identity. Comptes Rendus. Mathématique, Volume 349 (2011) no. 13-14, pp. 797-800. doi : 10.1016/j.crma.2011.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.001/
[1] The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 4, pp. 1083-1094
[2] Some estimates for the Bergman kernel and metric in terms of logarithmic capacity, Nagoya Math. J., Volume 185 (2007), pp. 143-150
[3] On the extension of holomorphic -forms, Chin. Ann. Math. Ser. A, Volume 19 (1998), pp. 433-436 (in Chinese)
[4] A remark on an extension theorem of Ohsawa, Chin. Ann. Math. Ser. A, Volume 24 (2003), pp. 129-134 (in Chinese)
[5] On the Ohsawa–Takegoshi–Manivel extension theorem, Paris, September 1997 (Progress in Mathematics) (2000)
[6] Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html (electronically accessible at)
[7] Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010
[8] -cohomology and index theorem for the Bergman metric, Ann. of Math. (2), Volume 118 (1983), pp. 593-618
[9] On the differential form spectrum of negatively curved Riemann manifolds, Amer. J. Math., Volume 106 (1984), pp. 169-185
[10] Prolongement de courants positifs à travers une sous-variété CR, J. Math. Pures Appl. (9), Volume 78 (1999) no. 9, pp. 895-911
[11] Q. Guan, X. Zhou, L. Zhu, On the Ohsawa–Takegoshi extension theorem and the twisted Bochner–Kodaira identity with a non-smooth twist factor, preprint, 2010.
[12] Removable singularities for positive currents, Amer. J. Math., Volume 96 (1974), pp. 67-78
[13] Un théorème de prolongement de sections holomorphes dʼun fibré vectoriel, Math. Z., Volume 212 (1993), pp. 107-122
[14] Analytic inversion of adjunction: extension theorems with gain, Ann. Inst. Fourier (Grenoble), Volume 57 (2007) no. 3, pp. 703-718
[15] On the extension of holomorphic functions. III. Negligible weights, Math. Z., Volume 219 (1995) no. 2, pp. 215-225
[16] On the extension of holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204
[17] Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom., Volume 17 (1982), pp. 55-138
[18] The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi, Geometric Complex Analysis, Hayama, World Scientific, 1996, pp. 577-592
[19] Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217
Cited by Sources:
Comments - Policy