[Solutions de viscosité explicites de lʼéquation de Aronsson]
We establish that when
Nous démontrons que, pour
Accepté le :
Publié le :
Nikolaos I. Katzourakis 1
@article{CRMATH_2011__349_21-22_1173_0, author = {Nikolaos I. Katzourakis}, title = {Explicit singular viscosity solutions of the {Aronsson} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {1173--1176}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.010}, language = {en}, }
Nikolaos I. Katzourakis. Explicit singular viscosity solutions of the Aronsson equation. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1173-1176. doi : 10.1016/j.crma.2011.10.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.010/
[1] On certain singular solutions of the partial differential equation
[2] Construction of singular solutions to the p-harmonic equation and its limit equation for
[3] The infinity Laplacian, Aronssonʼs equation and their generalizations, Transactions of the AMS, Volume 360 (January 2008) no. 1 (electr. published on July 25, 2007)
[4] Userʼs guide to viscosity solutions of 2nd order partial differential equations, Bulletin of the AMS, Volume 27 (1992) no. 1, pp. 1-67
[5] Linearly approximatable functions, Proc. of the AMS (April 2009), pp. 1347-1356 (electr. published on October 6, 2008)
[6]
[7] L.C. Evans, C.K. Smart, Everywhere differentiability of infinity harmonic functions, preprint.
[8] Generalized cone comparison principle for viscosity solutions of the Aronsson equation and absolute minimizers, Communications in PDE, Volume 31 (2006), pp. 1027-1046
[9] N.I. Katzourakis, A Hölder continuous nowhere improvable function with derivative singular distribution, preprint.
[10]
[11]
- A quantitative Sobolev regularity for absolute minimizers involving Hamiltonian
in plane, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 6, pp. 5792-5853 | DOI:10.1137/21m1443601 | Zbl:1505.35170 - Regularity of absolute minimizers for continuous convex Hamiltonians, Journal of Differential Equations, Volume 274 (2021), pp. 1115-1164 | DOI:10.1016/j.jde.2020.11.011 | Zbl:1455.35035
- Existence of Viscosity Solutions to the Dirichlet Problem for the
-Laplacian, An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L∞ (2015), p. 101 | DOI:10.1007/978-3-319-12829-0_8 - On the structure of
-harmonic maps, Communications in Partial Differential Equations, Volume 39 (2014) no. 11, pp. 2091-2124 | DOI:10.1080/03605302.2014.920351 | Zbl:1304.49038 -
-minimal submanifolds, Proceedings of the American Mathematical Society, Volume 142 (2014) no. 8, pp. 2797-2811 | DOI:10.1090/s0002-9939-2014-12039-9 | Zbl:1301.35029 - Explicit 2D
-harmonic maps whose interfaces have junctions and corners, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 351 (2013) no. 17-18, pp. 677-680 | DOI:10.1016/j.crma.2013.07.028 | Zbl:1278.35057 -
variational problems for maps and the Aronsson PDE system, Journal of Differential Equations, Volume 253 (2012) no. 7, pp. 2123-2139 | DOI:10.1016/j.jde.2012.05.012 | Zbl:1248.35074 - A Hölder continuous nowhere improvable function with derivative singular distribution, S
MA Journal, Volume 59 (2012), pp. 37-51 | DOI:10.1007/bf03322609 | Zbl:1260.35051 - Solving Non-Linear PDE's for Mathematical Finance, SSRN Electronic Journal (2011) | DOI:10.2139/ssrn.2725441
Cité par 9 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier