We consider the long time semiclassical evolution for the linear Schrödinger equation. We show that, in the case of chaotic underlying classical dynamics and for times up to , the symbol of a propagated observable by the corresponding von Neumann–Heisenberg equation is, in a sense made precise below, precisely obtained by the push-forward of the symbol of the observable at time . The corresponding definition of the symbol calls upon a kind of Toeplitz quantization framework, and the symbol itself is an element of the noncommutative algebra of the (strong) unstable foliation of the underlying dynamics.
Nous considérons lʼévolution semiclassique à temps long pour lʼéquation de Schrödinger linéaire. Nous montrons que, dans le cas dʼune dynamique sous-jacente chaotique, le symbole principal dʼune observable est propagé, jusquʼà des temps de lʼordre de , par le flot classique sous-jacent, à condition de considérer un calcul symbolique de type Toeplitz que nous précisons et pour lequel le symbole appartient à lʼalgèbre non commutative du feuilletage (fort) instable de la dynamique classique correspondante.
Accepted:
Published online:
Thierry Paul 1
@article{CRMATH_2011__349_21-22_1177_0, author = {Thierry Paul}, title = {Semiclassical approximation and noncommutative geometry}, journal = {Comptes Rendus. Math\'ematique}, pages = {1177--1182}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.011}, language = {en}, }
Thierry Paul. Semiclassical approximation and noncommutative geometry. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1177-1182. doi : 10.1016/j.crma.2011.10.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.011/
[1] Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time, Asymptot. Anal., Volume 21 (1999), pp. 149-160
[2] Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Volume 111 (2002), pp. 223-252
[3] Noncommutative Geometry, Academic Press, Inc., 1994
[4] Sur la thérie non commutative de lʼintégration, Lectures Notes in Math., vol. 725, Springer, Berlin, 1979
[5] Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications, vol. 54, Cambridge University Press, 1995
[6] T. Paul, in preparation.
[7] The semi-classical trace formula and propagation of wave packets, J. Funct. Anal., Volume 132 (1995), pp. 192-249
[8] Semiclassical wave propagation for large times | arXiv
Cited by Sources:
Comments - Policy