[Approximation semiclassique et géométrie non commutative]
We consider the long time semiclassical evolution for the linear Schrödinger equation. We show that, in the case of chaotic underlying classical dynamics and for times up to
Nous considérons lʼévolution semiclassique à temps long pour lʼéquation de Schrödinger linéaire. Nous montrons que, dans le cas dʼune dynamique sous-jacente chaotique, le symbole principal dʼune observable est propagé, jusquʼà des temps de lʼordre de
Accepté le :
Publié le :
Thierry Paul 1
@article{CRMATH_2011__349_21-22_1177_0, author = {Thierry Paul}, title = {Semiclassical approximation and noncommutative geometry}, journal = {Comptes Rendus. Math\'ematique}, pages = {1177--1182}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.011}, language = {en}, }
Thierry Paul. Semiclassical approximation and noncommutative geometry. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1177-1182. doi : 10.1016/j.crma.2011.10.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.011/
[1] Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time, Asymptot. Anal., Volume 21 (1999), pp. 149-160
[2] Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Volume 111 (2002), pp. 223-252
[3] Noncommutative Geometry, Academic Press, Inc., 1994
[4] Sur la thérie non commutative de lʼintégration, Lectures Notes in Math., vol. 725, Springer, Berlin, 1979
[5] Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications, vol. 54, Cambridge University Press, 1995
[6] T. Paul, in preparation.
[7] The semi-classical trace formula and propagation of wave packets, J. Funct. Anal., Volume 132 (1995), pp. 192-249
[8] Semiclassical wave propagation for large times | arXiv
- Species of spaces, Theoretical physics, wavelets, analysis, genomics. An indisciplinary tribute to Alex Grossmann, Cham: Springer, 2023, pp. 307-386 | DOI:10.1007/978-3-030-45847-8_16 | Zbl:1555.81092
- Mathematical Entities without Objects. On Realism in Mathematics and a Possible Mathematization of (Non)Platonism: Does Platonism Dissolve in Mathematics?, European Review, Volume 29 (2021) no. 2, p. 253 | DOI:10.1017/s1062798720000393
- Symbolic calculus for singular curve operators, Schrödinger operators, spectral analysis and number theory. In memory of Erik Balslev, Cham: Springer, 2021, pp. 195-221 | DOI:10.1007/978-3-030-68490-7_10 | Zbl:1471.81085
- High-frequency dynamics for the Schrödinger equation, with applications to dispersion and observability, Nonlinear optical and atomic systems. At the interface of physics and mathematics. Based on lecture notes given at the 2013 Painlevé-CEMPI-PhLAM thematic semester., Cham: Springer; Lille: Centre Européen pour les Mathématiques, la Physiques et leurs Interactions (CEMPI), 2015, pp. 275-335 | DOI:10.1007/978-3-319-19015-0_4 | Zbl:1337.35126
Cité par 4 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier