The height functions of -flow translators in the Euclidean space solve the classical Monge–Ampère equation . We explicitly and geometrically determine the moduli space of all helicoidal -flow translators, which are generated from planar curves by the action of helicoidal groups.
Les fonctions de hauteur des translateurs du flot de résolvent lʼéquation de Monge–Ampère classique . Nous déterminons de manière géométrique explicite lʼespace des modules de tous les translateurs à symétrie hélicoïdale du flot , qui sont engendré à partir de courbes planes par lʼaction de groupes hélicoïdaux.
Accepted:
Published online:
Hojoo Lee 1
@article{CRMATH_2013__351_11-12_477_0,
author = {Hojoo Lee},
title = {Isometric deformations of the $ {\mathcal{K}}^{\frac{1}{4}}$-flow translators in $ {\mathbb{R}}^{3}$ with helicoidal symmetry},
journal = {Comptes Rendus. Math\'ematique},
pages = {477--482},
year = {2013},
publisher = {Elsevier},
volume = {351},
number = {11-12},
doi = {10.1016/j.crma.2013.06.006},
language = {en},
}
TY - JOUR
AU - Hojoo Lee
TI - Isometric deformations of the $ {\mathcal{K}}^{\frac{1}{4}}$-flow translators in $ {\mathbb{R}}^{3}$ with helicoidal symmetry
JO - Comptes Rendus. Mathématique
PY - 2013
SP - 477
EP - 482
VL - 351
IS - 11-12
PB - Elsevier
DO - 10.1016/j.crma.2013.06.006
LA - en
ID - CRMATH_2013__351_11-12_477_0
ER -
%0 Journal Article
%A Hojoo Lee
%T Isometric deformations of the $ {\mathcal{K}}^{\frac{1}{4}}$-flow translators in $ {\mathbb{R}}^{3}$ with helicoidal symmetry
%J Comptes Rendus. Mathématique
%D 2013
%P 477-482
%V 351
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2013.06.006
%G en
%F CRMATH_2013__351_11-12_477_0
Hojoo Lee. Isometric deformations of the $ {\mathcal{K}}^{\frac{1}{4}}$-flow translators in $ {\mathbb{R}}^{3}$ with helicoidal symmetry. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 477-482. doi: 10.1016/j.crma.2013.06.006
[1] Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Differential Equations, Volume 2 (1994) no. 1, pp. 101-111
[2] Contraction of convex hypersurfaces by their affine normal, J. Differential Geom., Volume 43 (1996) no. 2, pp. 207-230
[3] Gauss curvature flow: the fate of the rolling stones, Invent. Math., Volume 138 (1999) no. 1, pp. 151-161
[4] Motion of hypersurfaces by Gauss curvature, Pacific J. Math., Volume 195 (2000) no. 1, pp. 1-34
[5] Hypersurfaces with maximal affinely invariant area, Amer. J. Math., Volume 104 (1982) no. 1, pp. 91-126
[6] Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom., Volume 22 (1985) no. 1, pp. 117-138
[7] Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differential Equations, Volume 29 (2007) no. 3, pp. 281-293
[8] Helicoidal surfaces with constant mean curvature, Tohoku Math. J. (2), Volume 34 (1982) no. 3, pp. 425-435
[9] A generalised Joyce construction for a family of nonlinear partial differential equations, J. Gökova Geom. Topol. GGT, Volume 3 (2009), pp. 1-8
[10] The surfaces of Delaunay, Math. Intelligencer, Volume 9 (1987) no. 1, pp. 53-57
[11] Shapes of worn stones, Mathematika, Volume 21 (1974), pp. 1-11
[12] On a theorem by do Carmo and Dajczer, Proc. Amer. Math. Soc., Volume 126 (1998) no. 5, pp. 1547-1548
[13] Helicoidal surfaces rotating/translating under the mean curvature flow, Geom. Dedicata, Volume 162 (2013), pp. 45-65
[14] Calibrated geometries, Acta Math., Volume 148 (1982), pp. 47-157
[15] Split special Lagrangian geometry | arXiv
[16] Uber Die Losungen der Differentialgleichung , Math. Ann., Volume 127 (1954), pp. 130-134
[17] The Delaunay surfaces, Bull. Kyoto Univ. Ed. Ser. B, Volume 97 (2000), pp. 13-33
[18] Complete minimal surfaces in , Ann. of Math. (2), Volume 92 (1970), pp. 335-374
[19] Minimal surface systems, maximal surface systems and special Lagrangian equations, Trans. Amer. Math. Soc., Volume 365 (2013) no. 7, pp. 3775-3797
[20] Volume maximization in semi-Riemannian manifolds, Indiana Univ. Math. J., Volume 40 (1991), pp. 793-814
[21] A Comprehensive Introduction to Differential Geometry, vol. IV, Publish or Perish, Inc., Wilmington, NC, 1979
[22] The affine Plateau problem, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 253-289
[23] Deforming a hypersurface by its Gauss–Kronecker curvature, Comm. Pure Appl. Math., Volume 38 (1985) no. 6, pp. 867-882
[24] Complete noncompact self-similar solutions of Gauss curvature flows. I. Positive powers, Math. Ann., Volume 311 (1998) no. 2, pp. 251-274
Cited by Sources:
☆ This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Education, Science and Technology) [NRF-2011-357-C00007].
Comments - Policy
