[Cohomologie de déformation d'un algèbroïde de Lie et équivalence de Morita]
Soit un algébroïde de Lie. Dans cette note, nous prouvons qu'un pull-back de A lelong d'une fibration ayant des fibres homologiquement m-connexes possède la même cohomologie de déformation que A jusqu'au degré m.
Let be a Lie algebroid. In this short note, we prove that a pull-back of A along a fibration with homologically m-connected fibers shares the same deformation cohomology of A up to degree m.
Accepté le :
Publié le :
Giovanni Sparano 1 ; Luca Vitagliano 1
@article{CRMATH_2018__356_4_376_0, author = {Giovanni Sparano and Luca Vitagliano}, title = {Deformation cohomology of {Lie} algebroids and {Morita} equivalence}, journal = {Comptes Rendus. Math\'ematique}, pages = {376--381}, publisher = {Elsevier}, volume = {356}, number = {4}, year = {2018}, doi = {10.1016/j.crma.2018.03.004}, language = {en}, }
Giovanni Sparano; Luca Vitagliano. Deformation cohomology of Lie algebroids and Morita equivalence. Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 376-381. doi : 10.1016/j.crma.2018.03.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.03.004/
[1] Representations up to homotopy of Lie algebroids, J. Reine Angew. Math., Volume 663 (2012), pp. 91-126 (e-print) | arXiv
[2] Differentiable stacks and gerbes, J. Symplectic Geom., Volume 9 (2011), pp. 285-341 (e-print) | arXiv
[3] Van Est isomorphism for homogeneous cochains, Pac. J. Math., Volume 287 (2017), pp. 297-336 (e-print) | arXiv
[4] Differentiable and algebroid cohomology, Van Est isomorphisms, and characteristic classes, Comment. Math. Helv., Volume 78 (2003), pp. 681-721 (e-print) | arXiv
[5] Deformations of Lie groupoids, 2015 (e-print) | arXiv
[6] Foliation groupoids and their cyclic homology, Adv. Math., Volume 1157 (2001), pp. 177-197 (e-print) | arXiv
[7] Deformations of Lie brackets: cohomological aspects, J. Eur. Math. Soc., Volume 10 (2008), pp. 1037-1059 (e-print) | arXiv
[8] Morita equivalences of vector bundles, 2016 (e-print) | arXiv
[9] Grothendieck groups of Poisson vector bundles, J. Symplectic Geom., Volume 1 (2001), pp. 121-170 (e-print) | arXiv
[10] Lie algebroid structures on double vector bundles and representation theory of Lie algebroids, Adv. Math., Volume 223 (2010), pp. 1236-1275 (e-print) | arXiv
[11] A cohomology for foliated manifolds, Bull. Amer. Math. Soc., Volume 79 (1973), pp. 1283-1285
[12] P.P. La Pastina, L. Vitagliano, Deformations of linear Lie brackets, in preparation.
[13] On the strong homotopy Lie–Rinehart algebra of foliation, Commun. Contemp. Math., Volume 16 (2014) (e-print) | arXiv
[14] Morita equivalence of Poisson manifolds, Commun. Math. Phys., Volume 142 (1991), pp. 493-509
Cité par Sources :
Commentaires - Politique