Accepted:
Published online:
Vladimir S. Matveev 1
@article{CRMATH_2015__353_1_81_0, author = {Vladimir S. Matveev}, title = {There exist no locally symmetric {Finsler} spaces of positive or negative flag curvature}, journal = {Comptes Rendus. Math\'ematique}, pages = {81--83}, publisher = {Elsevier}, volume = {353}, number = {1}, year = {2015}, doi = {10.1016/j.crma.2014.10.022}, language = {en}, }
Vladimir S. Matveev. There exist no locally symmetric Finsler spaces of positive or negative flag curvature. Comptes Rendus. Mathématique, Volume 353 (2015) no. 1, pp. 81-83. doi : 10.1016/j.crma.2014.10.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.10.022/
[1] Ricci and Flag Curvatures in Finsler Geometry, Riemann–Finsler Geometry MSRI Publications, vol. 50, 2004
[2] An Introduction to Riemann–Finsler Geometry, Graduate Texts in Mathematics, vol. 200, Springer-Verlag Inc., New York, 2000
[3] Invariants of finite groups generated by reflections, Amer. J. Math., Volume 77 (1955), pp. 778-782
[4] On symmetric Finsler spaces, Isr. J. Math., Volume 162 (2007), pp. 197-219
[5] Locally symmetric Finsler spaces in negative curvature, C. R. Acad. Sci. Paris, Ser. I, Volume 324 (1997) no. 10, pp. 1127-1132
[6] Curvature and global rigidity in Finsler manifolds, Houst. J. Math., Volume 28 (2002) no. 2, pp. 263-292
[7] Locally symmetric positively curved Finsler spaces, Arch. Math., Volume 880 (2007), pp. 378-384
[8] The Binet–Legendre metric in Finsler geometry, Geom. Topol., Volume 16 (2012), pp. 2135-2170
[9] Critical Point Theory and Submanifold Geometry, Lecture Notes in Mathematics, vol. 1353, Springer-Verlag, New York, 1988
[10] On transitivity of holonomy systems, Ann. of Math. (2), Volume 76 (1962), pp. 213-234
Cited by Sources:
Comments - Policy