In this note we announce a result for vector fields on three-dimensional manifolds: those who are singular hyperbolic or exhibit a homoclinic tangency form a dense subset of the space of -vector fields. This answers a conjecture by Palis. The argument uses an extension for local fibred flows of Mañé and Pujals–Sambarino's theorems about the uniform contraction of one-dimensional dominated bundles.
Dans cette note, nous annonçons un résultat portant sur les champs de vecteurs des variétés de dimension 3 : ceux qui vérifient l'hyperbolicité singulière ou qui possèdent une tangence homocline forment un sous-ensemble dense de l'espace des champs de vecteurs . Ceci répond à une conjecture de Palis. La démonstration utilise une généralisation pour les flots fibrés locaux des théorèmes de Mañé et Pujals–Sambarino traitant de la contraction uniforme de fibrés unidimensionnels dominés.
Accepted:
Published online:
Sylvain Crovisier 1; Dawei Yang 2
@article{CRMATH_2015__353_1_85_0, author = {Sylvain Crovisier and Dawei Yang}, title = {On the density of singular hyperbolic three-dimensional vector fields: a conjecture of {Palis}}, journal = {Comptes Rendus. Math\'ematique}, pages = {85--88}, publisher = {Elsevier}, volume = {353}, number = {1}, year = {2015}, doi = {10.1016/j.crma.2014.10.015}, language = {en}, }
TY - JOUR AU - Sylvain Crovisier AU - Dawei Yang TI - On the density of singular hyperbolic three-dimensional vector fields: a conjecture of Palis JO - Comptes Rendus. Mathématique PY - 2015 SP - 85 EP - 88 VL - 353 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2014.10.015 LA - en ID - CRMATH_2015__353_1_85_0 ER -
Sylvain Crovisier; Dawei Yang. On the density of singular hyperbolic three-dimensional vector fields: a conjecture of Palis. Comptes Rendus. Mathématique, Volume 353 (2015) no. 1, pp. 85-88. doi : 10.1016/j.crma.2014.10.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.10.015/
[1] The origin and structure of the Lorenz attractor, Dokl. Akad. Nauk SSSR, Volume 234 (1977), pp. 336-339
[2] Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003), pp. 805-841
[3] Essential hyperbolicity and homoclinic bifurcations: a dichotomy phenomenon/mechanism for diffeomorphisms, Invent. Math. (2014) (Preprint) | arXiv | DOI
[4] S. Crovisier, M. Sambarino, E. Pujals, Hyperbolicity of the extremal bundles, in preparation.
[5] Morse–Smale systems and non-trivial horseshoes for three-dimensional singular flows (Preprint) | arXiv
[6] A strange, strange attractor, The Hopf Bifurcation Theorems and Its Applications, Applied Mathematical Series, vol. 19, Springer-Verlag, 1976, pp. 368-381
[7] Robustly transitive singular sets via approach of extended linear Poincaré flow, Discrete Contin. Dyn. Syst., Volume 13 (2005), pp. 239-269
[8] On -contractible orbits of vector fields, Syst. Sci. Math. Sci., Volume 2 (1989), pp. 193-227
[9] Hyperbolicity, sinks and measure in one-dimensional dynamics, Commun. Math. Phys., Volume 100 (1985), pp. 495-524
[10] Sectional-hyperbolic systems, Ergod. Theory Dyn. Syst., Volume 28 (2008), pp. 1587-1597
[11] A dichotomy for three-dimensional vector fields, Ergod. Theory Dyn. Syst., Volume 23 (2003), pp. 1575-1600
[12] Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. Math., Volume 160 (2004), pp. 375-432
[13] The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. IHÉS, Volume 50 (1979), pp. 101-151
[14] Homoclinic bifurcations, sensitive-chaotic dynamics and strange attractors, Nagoya, 1990 (Adv. Ser. Dynam. Systems) (1991), pp. 466-472
[15] A global view of dynamics and a conjecture of the denseness of finitude of attractors, Astérisque, Volume 261 (2000), pp. 335-347
[16] A global perspective for non-conservative dynamics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005), pp. 485-507
[17] Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. Math. (2), Volume 151 (2000), pp. 961-1023
[18] Indices of singularities of robustly transitive sets, Discrete Contin. Dyn. Syst., Volume 21 (2008), pp. 945-957
Cited by Sources:
Comments - Policy