Comptes Rendus
Geometry/Algebraic geometry
A characterization of d-uple Veronese varieties
[Une caractérisation des variétés d-uples de Veronese]
Comptes Rendus. Mathématique, Volume 353 (2015) no. 4, pp. 333-338.

Nous caractérisons les plongements d-uples de Veronese d'espaces projectifs de dimension finie. L'instance non triviale la plus simple de notre théorème est le plongement du plan projectif dans un espace projectif de dimension 5, un résultat obtenu en 1901 par Severi lorsque le corps sous-jacent est le corps des nombres complexes.

We characterize d-uple Veronese embeddings of finite-dimensional projective spaces. The easiest non-trivial instance of our theorem is the embedding of the projective plane in a 5-dimensional projective space, a result obtained in 1901 by Severi when the underlying field is the field of complex numbers.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.01.002

Jeroen Schillewaert 1 ; Koen Struyve 2

1 Department of Mathematics, Imperial College, London, United Kingdom
2 Department of Mathematics, Ghent University, Ghent, Belgium
@article{CRMATH_2015__353_4_333_0,
     author = {Jeroen Schillewaert and Koen Struyve},
     title = {A characterization of \protect\emph{d}-uple {Veronese} varieties},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {333--338},
     publisher = {Elsevier},
     volume = {353},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crma.2015.01.002},
     language = {en},
}
TY  - JOUR
AU  - Jeroen Schillewaert
AU  - Koen Struyve
TI  - A characterization of d-uple Veronese varieties
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 333
EP  - 338
VL  - 353
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2015.01.002
LA  - en
ID  - CRMATH_2015__353_4_333_0
ER  - 
%0 Journal Article
%A Jeroen Schillewaert
%A Koen Struyve
%T A characterization of d-uple Veronese varieties
%J Comptes Rendus. Mathématique
%D 2015
%P 333-338
%V 353
%N 4
%I Elsevier
%R 10.1016/j.crma.2015.01.002
%G en
%F CRMATH_2015__353_4_333_0
Jeroen Schillewaert; Koen Struyve. A characterization of d-uple Veronese varieties. Comptes Rendus. Mathématique, Volume 353 (2015) no. 4, pp. 333-338. doi : 10.1016/j.crma.2015.01.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.01.002/

[1] E. Bompiani Proprietà differenziali carracteristiche di enti algebrici, Rom. Acc. L. Mem., Volume 26 (1921), pp. 452-474

[2] L.R.A. Casse; D.G. Glynn On the uniqueness of (q+1)4-arcs of P4(Fq), q=2h, h3, Discrete Math., Volume 48 (1984), pp. 173-186

[3] D.G. Glynn The non-classical 10-arc of P4(F9), Discrete Math., Volume 59 (1986), pp. 43-51

[4] J. Harris Algebraic Geometry: A First Course, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992

[5] J.W.P. Hirschfeld; J.A. Thas General Galois Geometries, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991

[6] W.M. Kantor; E.E. Shult Veroneseans, power subspaces and independence, Adv. Geom., Volume 13 (2013), pp. 511-531

[7] R. Lazarsfeld; A. Van de Ven Topics in the Geometry of Projective Space, Recent Work of F.L. Zak, Birkhäuser Verlag, Basel, Boston, Massachusetts, 1984

[8] L. Lunelli; M. Sce Considerazioni arithmetiche e risultati sperimentali sui {K;n}q arch, Rend. - Ist. Lomb., Accad. Sci. Lett., a Sci. Mat. Fis. Chim. Geol., Volume 98 (1964), pp. 3-52

[9] F. Mazzocca; N. Melone Caps and Veronese varieties in projective Galois spaces, Discrete Math., Volume 48 (1984), pp. 243-252

[10] E. Mezzetti; D. Portelli A tour through some classical theorems on algebraic surfaces, An. Univ. “Ovidius” Constanţa, Ser. Mat., Volume 5 (1997), pp. 51-78

[11] U. Morin Sui sistemi di piani a due a due incidenti, Atti Reale Ist. Veneto Sci. Lett. Arti, Volume LXXXIX (1930), pp. 907-926

[12] L. Pirio; F. Russo Varieties n-covered by curves of degree δ, Comment. Math. Helv., Volume 88 (2013), pp. 715-757

[13] L. Pirio; J.-M. Trépreau Sur les variétés XPN telles que par n points passe une courbe de X de degré donné, Bull. Soc. Math. Fr., Volume 141 (2013), pp. 131-195

[14] J. Schillewaert; H. Van Maldeghem Quadric Veronesean caps, Bull. Belg. Math. Soc. Simon Stevin, Volume 20 (2013), pp. 19-25

[15] C. Segre Le superficie degli iperspazi con una doppia infinità di curve piano o spaziali, Atti R. Accad. Sci. Torino, Volume 56 (1921), pp. 75-89 (also in: Opere, Vol. II, XXXIII, 163–175)

[16] B. Segre Curve razionali normali e k-archi negli spazi finiti, Ann. Mat. Pura Appl., Volume 39 (1955), pp. 357-379

[17] F. Severi Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a suoi punti tripli apparenti, Rend. Circ. Mat. Palermo, Volume 15 (1901), pp. 33-51

[18] I.R. Shafarevich Basic Algebraic Geometry, I, Springer-Verlag, 1994

[19] J.A. Thas; H. Van Maldeghem Classification of finite Veronesean caps, Eur. J. Comb., Volume 25 (2004), pp. 275-285

[20] G.K.C. von Staudt Geometrie der Lage, Verlag von Bauer und Raspe (Julius Merz), Nuremberg, Germany, 1847

[21] F. Zak Tangents and Secants of Algebraic Varieties, Translation of Mathematical Monographs, AMS, 1983

Cité par Sources :

Commentaires - Politique