[Les développements de Taylor-
In this note, we introduce a variant of Calderón and Zygmund's notion of
Dans cette note, nous introduisons une variante de la notion de Calderón et Zygmund de différentiabilité
Accepté le :
Publié le :
Daniel Spector 1, 2
@article{CRMATH_2015__353_4_327_0, author = {Daniel Spector}, title = {$ {L}^{p}${-Taylor} approximations characterize the {Sobolev} space $ {W}^{1,p}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {327--332}, publisher = {Elsevier}, volume = {353}, number = {4}, year = {2015}, doi = {10.1016/j.crma.2015.01.010}, language = {en}, }
Daniel Spector. $ {L}^{p}$-Taylor approximations characterize the Sobolev space $ {W}^{1,p}$. Comptes Rendus. Mathématique, Volume 353 (2015) no. 4, pp. 327-332. doi : 10.1016/j.crma.2015.01.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.01.010/
[1] Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc., Volume 191 (1974), pp. 129-148
[2] Another look at Sobolev spaces (J.L. Menaldi et al., eds.), Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439-455 (A volume in honour of A. Benssoussan's 60th birthday)
[3] A note on local properties of solutions of elliptic differential equations, Proc. Natl. Acad. Sci. USA, Volume 46 (1960), pp. 1385-1389
[4] Local properties of solutions of elliptic partial differential equations, Stud. Math., Volume 20 (1961), pp. 171-225
[5] Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, USA, 1992
[6] Characterization of Sobolev and BV spaces, J. Funct. Anal., Volume 261 (2011), pp. 2926-2958
[7] Localization of nonlocal gradients in various topologies, Calc. Var. Partial Differ. Equ., Volume 52 (2015), pp. 253-279
[8] A remark on Calderón–Zygmund classes and Sobolev spaces, Proc. Amer. Math. Soc., Volume 130 (2002), pp. 1655-1659
[9] A characterization of Sobolev spaces via local derivatives, Colloq. Math., Volume 119 (2010), pp. 157-167
[10] Weakly Differentiable Functions, Springer-Verlag, New York, 1989
- A Taylor expansion-based texture and edge-preserving interpolation approach for arbitrary-scale image super-resolution, Pattern Recognition, Volume 169 (2026), p. 111965 | DOI:10.1016/j.patcog.2025.111965
- Non-local approximations of the gradient, Confluentes Mathematici, Volume 15 (2024), pp. 27-44 | DOI:10.5802/cml.91 | Zbl:1550.46024
- New directions in harmonic analysis on
, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 192 (2020), p. 20 (Id/No 111685) | DOI:10.1016/j.na.2019.111685 | Zbl:1437.42037 - On formulae decoupling the total variation of BV functions, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 154 (2017), pp. 241-257 | DOI:10.1016/j.na.2016.08.028 | Zbl:1359.26011
- On a generalization of
-differentiability, Calculus of Variations and Partial Differential Equations, Volume 55 (2016) no. 3, p. 21 (Id/No 62) | DOI:10.1007/s00526-016-1004-9 | Zbl:1355.46043
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier