Comptes Rendus
Partial differential equations/Mathematical physics
Wave fluctuations near a de Sitter brane in an anti-de Sitter universe
Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 19-25.

We investigate the Klein–Gordon equation in the past causal domain of a de Sitter brane imbedded in an anti-de Sitter bulk. We solve the global mixed hyperbolic problem. We prove that any finite energy solution can be expressed as a Kaluza–Klein tower that is a superposition of free fields in the Steady State Universe, of which we study the asymptotic behaviors. We show that the leading term of a gravitational fluctuation is a massless graviton, i.e. the de Sitter brane is linearly stable.

Nous étudions l'équation de Klein–Gordon dans le domaine causal passé d'une brane de de Sitter incluse dans un espace anti-de Sitter. Nous résolvons le problème mixte hyperbolique et prouvons que les solutions d'énergie finie s'expriment comme superposition de champs libres dans le demi-espace de de Sitter et nous en étudions les comportements asymptotiques. Nous montrons que le terme dominant des fluctuations gravitationnelles est un graviton sans masse, ce qui traduit la stabilité linéaire de la brane.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.09.023

Alain Bachelot 1

1 Université de Bordeaux, Institut de mathématiques, UMR CNRS 5251, 33405 Talence cedex, France
@article{CRMATH_2016__354_1_19_0,
     author = {Alain Bachelot},
     title = {Wave fluctuations near a de {Sitter} brane in an anti-de {Sitter} universe},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {19--25},
     publisher = {Elsevier},
     volume = {354},
     number = {1},
     year = {2016},
     doi = {10.1016/j.crma.2015.09.023},
     language = {en},
}
TY  - JOUR
AU  - Alain Bachelot
TI  - Wave fluctuations near a de Sitter brane in an anti-de Sitter universe
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 19
EP  - 25
VL  - 354
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2015.09.023
LA  - en
ID  - CRMATH_2016__354_1_19_0
ER  - 
%0 Journal Article
%A Alain Bachelot
%T Wave fluctuations near a de Sitter brane in an anti-de Sitter universe
%J Comptes Rendus. Mathématique
%D 2016
%P 19-25
%V 354
%N 1
%I Elsevier
%R 10.1016/j.crma.2015.09.023
%G en
%F CRMATH_2016__354_1_19_0
Alain Bachelot. Wave fluctuations near a de Sitter brane in an anti-de Sitter universe. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 19-25. doi : 10.1016/j.crma.2015.09.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.09.023/

[1] A. Bachelot Wave propagation and scattering for the RS2 brane cosmology model, J. Hyperbolic Differ. Equ., Volume 6 (2009), pp. 809-861

[2] A. Bachelot The Klein–Gordon equation in the anti-de Sitter cosmology, J. Math. Pures Appl., Volume 96 (2011), pp. 527-554

[3] A. Bachelot New dynamics in the anti-de Sitter universe AdS5, Commun. Math. Phys., Volume 320 (2013), pp. 723-759

[4] A. Bachelot On the Klein–Gordon equation near a de Sitter brane in an anti-de Sitter bulk | arXiv

[5] A. Campos; C.F. Sopuerta Evolution of cosmological models in the brane-world scenario, Phys. Rev. D, Volume 63 (2001)

[6] A. Galstian; K. Yagdjian Fundamental solutions for the Klein–Gordon equation in de Sitter spacetime, Commun. Math. Phys., Volume 285 (2009), pp. 293-344

[7] S. Kobayashi; K. Koyama; J. Soda Thick brane worlds and their stability, Phys. Rev. D, Volume 65 (2001)

[8] D. Langlois; M. Sasaki Massive scalar states localized on a de Sitter brane, Phys. Rev. D, Volume 68 (2003)

[9] M. Minamitsuji; M. Sasaki Linearized gravity on the de Sitter brane in the Einstein Gauss–Bonnet theory, Prog. Theor. Phys., Volume 112 (2004), pp. 451-473

[10] M.K. Parikh; S.N. Solodukhin De Sitter brane gravity: from close-up to panorama, Phys. Lett. B, Volume 503 (2001), pp. 384-393

[11] A. Vasy The wave equation on asymptotically de Sitter-like spaces, Adv. Math., Volume 223 (2010), pp. 49-97

Cited by Sources:

Comments - Policy