Comptes Rendus
Homological algebra/Algebraic geometry
Algebraic K-theory with coefficients of cyclic quotient singularities
Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 449-452.

In this note, by combining the work of Amiot–Iyama–Reiten and Thanhoffer de Völcsey–Van den Bergh on Cohen–Macaulay modules with the previous work of the author on orbit categories, we compute the algebraic K-theory with coefficients of cyclic quotient singularities.

Dans cette note, en combinant les travaux de Amiot–Iyama–Reiten et Thanhoffer de Völcsey–Van den Bergh sur les modules Cohen–Macaulay avec le travail précédent de l'auteur sur les catégories d'orbites, nous calculons la K-théorie algébrique avec coefficients des singularités quotient cycliques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.01.017

Gonçalo Tabuada 1, 2, 3

1 Department of Mathematics, MIT, Cambridge, MA 02139, USA
2 Departamento de Matemática, FCT, UNL, Portugal
3 Centro de Matemática e Aplicações (CMA), FCT, UNL, Portugal
@article{CRMATH_2016__354_5_449_0,
     author = {Gon\c{c}alo Tabuada},
     title = {Algebraic {\protect\emph{K}-theory} with coefficients of cyclic quotient singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {449--452},
     publisher = {Elsevier},
     volume = {354},
     number = {5},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.017},
     language = {en},
}
TY  - JOUR
AU  - Gonçalo Tabuada
TI  - Algebraic K-theory with coefficients of cyclic quotient singularities
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 449
EP  - 452
VL  - 354
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.017
LA  - en
ID  - CRMATH_2016__354_5_449_0
ER  - 
%0 Journal Article
%A Gonçalo Tabuada
%T Algebraic K-theory with coefficients of cyclic quotient singularities
%J Comptes Rendus. Mathématique
%D 2016
%P 449-452
%V 354
%N 5
%I Elsevier
%R 10.1016/j.crma.2016.01.017
%G en
%F CRMATH_2016__354_5_449_0
Gonçalo Tabuada. Algebraic K-theory with coefficients of cyclic quotient singularities. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 449-452. doi : 10.1016/j.crma.2016.01.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.017/

[1] C. Amiot; O. Iyama; I. Reiten Stable categories of Cohen–Macaulay modules and cluster categories, Amer. J. Math., Volume 137 (2015) no. 3, pp. 813-857

[2] L. de Thanhoffer; M. Van den Bergh Explicit models for some stable categories of maximal Cohen–Macaulay modules, 2016 (Math. Res. Lett., in press) | arXiv

[3] B. Keller On triangulated orbit categories, Doc. Math., Volume 10 (2005), pp. 551-581

[4] D. Orlov Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Proc. Steklov Inst. Math., Volume 246 (2004), pp. 227-248

[5] D. Orlov Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, Arithmetic, and Geometry: In Honor of Yu.I. Manin, vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Inc., Boston, MA, USA, 2009, pp. 503-531

[6] A. Suslin On the K-theory of local fields, J. Pure Appl. Algebra, Volume 34 (1984) no. 2–3, pp. 301-318 (in: Proceedings of the Luminy Conference on Algebraic K-Theory, Luminy, 1983)

[7] G. Tabuada A1-homotopy invariants of dg orbit categories, J. Algebra, Volume 434 (2015), pp. 169-192

[8] G. Tabuada A1-homotopy invariance of algebraic K-theory with coefficients and Kleinian singularities, 2016 (Annals of K-theory, in press) | arXiv

Cited by Sources:

Comments - Policy