[Sur le groupe fondamental au sens de la A1-homotopie des groupes réductifs isotropes]
Pour un groupe réductif isotrope G défini sur un corps infini k, satisfaisant une condition de rang approprié, nous montrons que l'ensemble des sections du
For an isotropic reductive group G satisfying a suitable rank condition over an infinite field k, we show that the sections of the
Accepté le :
Publié le :
Konrad Voelkel 1 ; Matthias Wendt 2
@article{CRMATH_2016__354_5_453_0, author = {Konrad Voelkel and Matthias Wendt}, title = {On $ {\mathbb{A}}^{1}$-fundamental groups of isotropic reductive groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {453--458}, publisher = {Elsevier}, volume = {354}, number = {5}, year = {2016}, doi = {10.1016/j.crma.2016.01.026}, language = {en}, }
Konrad Voelkel; Matthias Wendt. On $ {\mathbb{A}}^{1}$-fundamental groups of isotropic reductive groups. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 453-458. doi : 10.1016/j.crma.2016.01.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.026/
[1] Affine representability results in
[2] Affine representability results in
[3] Simplicial Homotopy Theory, Prog. Math., vol. 174, Birkhäuser, 1999
[4] The Steinberg relation in
[5] On the homotopy groups of algebraic groups, J. Algebra, Volume 81 (1983) no. 1, pp. 180-201
[6] The elementary subgroup of an isotropic reductive group is perfect, Algebra Anal., Volume 23 (2011) no. 5, pp. 140-154 (translation in St. Petersburg Math. J., 23, 5, 2012, pp. 881-890)
[7] Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. Éc. Norm. Super. (4), Volume 2 (1969), pp. 1-62
[8]
[9] Elementary subgroups in isotropic reductive groups, Algebra Anal., Volume 20 (2008) no. 4, pp. 160-188 (translation in St. Petersburg Math. J., 20, 4, 2009, pp. 625-644)
[10] Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers, J. Reine Angew. Math., Volume 301 (1978), pp. 77-104
[11] Homotopy invariance of non-stable
[12] K. Voelkel, Matsumotos Satz und
[13]
[14] On homology of linear groups over
- On the
-invariance of of Chevalley groups of simply-laced type, European Journal of Mathematics, Volume 11 (2025) no. 1, p. 42 (Id/No 14) | DOI:10.1007/s40879-024-00805-6 | Zbl:8017407 - Cellular
-homology and the motivic version of Matsumoto's theorem, Advances in Mathematics, Volume 434 (2023), p. 110 (Id/No 109346) | DOI:10.1016/j.aim.2023.109346 | Zbl:1543.14017 - On the 𝔸1-Invariance of K2 Modeled on Linear and Even Orthogonal Groups, International Mathematics Research Notices, Volume 2023 (2023) no. 24, p. 21906 | DOI:10.1093/imrn/rnac320
- Localization and nilpotent spaces in
-homotopy theory, Compositio Mathematica, Volume 158 (2022) no. 3, pp. 654-720 | DOI:10.1112/s0010437x22007321 | Zbl:1495.14035 - Affine representability results in
-homotopy theory. II: Principal bundles and homogeneous spaces, Geometry Topology, Volume 22 (2018) no. 2, pp. 1181-1225 | DOI:10.2140/gt.2018.22.1181 | Zbl:1400.14061
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier