For an isotropic reductive group G satisfying a suitable rank condition over an infinite field k, we show that the sections of the -fundamental group sheaf of G over an extension field can be identified with the second group homology of . For a split group G, we provide explicit loops representing all elements in the -fundamental group. Using -homotopy theory, we deduce a Steinberg relation for these explicit loops.
Pour un groupe réductif isotrope G défini sur un corps infini k, satisfaisant une condition de rang approprié, nous montrons que l'ensemble des sections du -faisceau de groupe fondamental de G sur une extension des corps s'identifient avec la deuxième homologie des groupes de . Pour un groupe déployé G, nous définissons des lacets explicites représentant tous les elements du groupe -fondamental. En utilisant la théorie de la -homotopie, on déduit une rélation de Steinberg pour ces lacets explicites.
Accepted:
Published online:
Konrad Voelkel 1; Matthias Wendt 2
@article{CRMATH_2016__354_5_453_0, author = {Konrad Voelkel and Matthias Wendt}, title = {On $ {\mathbb{A}}^{1}$-fundamental groups of isotropic reductive groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {453--458}, publisher = {Elsevier}, volume = {354}, number = {5}, year = {2016}, doi = {10.1016/j.crma.2016.01.026}, language = {en}, }
Konrad Voelkel; Matthias Wendt. On $ {\mathbb{A}}^{1}$-fundamental groups of isotropic reductive groups. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 453-458. doi : 10.1016/j.crma.2016.01.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.026/
[1] Affine representability results in -homotopy theory I: vector bundles, 2015 (ArXiV preprint) | arXiv
[2] Affine representability results in -homotopy theory II: principal bundles and homogeneous spaces, 2015 (ArXiV preprint) | arXiv
[3] Simplicial Homotopy Theory, Prog. Math., vol. 174, Birkhäuser, 1999
[4] The Steinberg relation in -stable homotopy, Int. Math. Res. Not. (2001) no. 17, pp. 907-912
[5] On the homotopy groups of algebraic groups, J. Algebra, Volume 81 (1983) no. 1, pp. 180-201
[6] The elementary subgroup of an isotropic reductive group is perfect, Algebra Anal., Volume 23 (2011) no. 5, pp. 140-154 (translation in St. Petersburg Math. J., 23, 5, 2012, pp. 881-890)
[7] Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. Éc. Norm. Super. (4), Volume 2 (1969), pp. 1-62
[8] -Algebraic Topology over a Field, Lecture Notes in Mathematics, vol. 2052, Springer, 2012
[9] Elementary subgroups in isotropic reductive groups, Algebra Anal., Volume 20 (2008) no. 4, pp. 160-188 (translation in St. Petersburg Math. J., 20, 4, 2009, pp. 625-644)
[10] Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers, J. Reine Angew. Math., Volume 301 (1978), pp. 77-104
[11] Homotopy invariance of non-stable -functors, J. K-Theory, Volume 13 (2014) no. 2, pp. 199-248
[12] K. Voelkel, Matsumotos Satz und -Homotopietheorie, Diplomarbeit, Albert-Ludwigs-Universität Freiburg, 2011.
[13] -homotopy of Chevalley groups, J. K-Theory, Volume 5 (2010) no. 2, pp. 245-287
[14] On homology of linear groups over , Math. Res. Lett., Volume 21 (2014) no. 6, pp. 1483-1500
Cited by Sources:
Comments - Policy