Comptes Rendus
Number theory
On the lower bound of the discrepancy of Halton's sequence I
[Sur la limite inférieure de la discrépance de la suite de Halton I]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 445-448.

Let (Hs(n))n1 be an s-dimensional Halton's sequence. Let DN be the discrepancy of the sequence (Hs(n))n=1N. It is known that NDN=O(lnsN) as N. In this paper, we prove that this estimate is exact:

limNNlns(N)DN>0.

Soit (Hs(n))n1 une suite de Halton á s dimensions. Soit DN la discrépance de la suite (Hs(n))n=1N. Il est connu que NDN=O(lnsN) lorsque N. Dans cet article, nous montrons que cette estimation est exacte :

limNNlns(N)DN>0.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.02.003

Mordechay B. Levin 1

1 Department of Mathematics, Bar-Ilan University, Ramat-Gan, 52900, Israel
@article{CRMATH_2016__354_5_445_0,
     author = {Mordechay B. Levin},
     title = {On the lower bound of the discrepancy of {Halton's} sequence {I}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {445--448},
     publisher = {Elsevier},
     volume = {354},
     number = {5},
     year = {2016},
     doi = {10.1016/j.crma.2016.02.003},
     language = {en},
}
TY  - JOUR
AU  - Mordechay B. Levin
TI  - On the lower bound of the discrepancy of Halton's sequence I
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 445
EP  - 448
VL  - 354
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2016.02.003
LA  - en
ID  - CRMATH_2016__354_5_445_0
ER  - 
%0 Journal Article
%A Mordechay B. Levin
%T On the lower bound of the discrepancy of Halton's sequence I
%J Comptes Rendus. Mathématique
%D 2016
%P 445-448
%V 354
%N 5
%I Elsevier
%R 10.1016/j.crma.2016.02.003
%G en
%F CRMATH_2016__354_5_445_0
Mordechay B. Levin. On the lower bound of the discrepancy of Halton's sequence I. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 445-448. doi : 10.1016/j.crma.2016.02.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.02.003/

[1] J. Beck; W.W.L. Chen Irregularities of Distribution, Cambridge University Press, Cambridge, UK, 1987

[2] D. Bilyk On Roth's orthogonal function method in discrepancy theory, Unif. Distrib. Theory, Volume 6 (2011) no. 1, pp. 143-184

[3] M. Drmota; R. Tichy Sequences, Discrepancies and Applications, Lecture Notes in Mathematics, vol. 1651, 1997

[4] H. Faure; H. Chaix Minoration de discrépance en dimension deux, Acta Arith., Volume 76 (1996) no. 2, pp. 149-164

[5] M.B. Levin On the lower bound in the lattice point remainder problem for a parallelepiped, Discrete Comput. Geom., Volume 54 (2015), pp. 826-870

[6] M.B. Levin On the lower bound of the discrepancy of (t,s) sequence II http://arXiv.org/abs/1505.04975

[7] M.B. Levin On the lower bound of the discrepancy of Halton's sequence II, Eur. J. Math. (2016) (in press) | DOI

  • Mordechay B. Levin ON THE UPPER BOUND OF THE Lp DISCREPANCY OF HALTON’S SEQUENCE AND THE CENTRAL LIMIT THEOREM FOR HAMMERSLEY’S NET, Journal of Mathematical Sciences, Volume 280 (2024) no. 6, p. 1002 | DOI:10.1007/s10958-024-07311-w
  • Mordechay B. Levin ON THE UPPER BOUND OF THE Lp DISCREPANCY OF HALTON’S SEQUENCE AND THE CENTRAL LIMIT THEOREM FOR HAMMERSLEY’S NET, II, Journal of Mathematical Sciences, Volume 280 (2024) no. 6, p. 1030 | DOI:10.1007/s10958-024-07312-9
  • Lai Zhang, Proceedings of the 2024 8th International Conference on Digital Signal Processing (2024), p. 146 | DOI:10.1145/3653876.3653889
  • Mordechay B. Levin On a bounded remainder set for a digital Kronecker sequence, Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 1, p. 163 | DOI:10.5802/jtnb.1197
  • Roswitha Hofer A lower bound on the star discrepancy of generalized Halton sequences in rational bases, Proceedings of the American Mathematical Society, Volume 147 (2019) no. 11, p. 4655 | DOI:10.1090/proc/14596
  • Lisa Kaltenböck; Wolfgang Stockinger On M. B. Levin’s Proofs for The Exact Lower Discrepancy Bounds of Special Sequences and Point Sets (A Survey), Uniform distribution theory, Volume 13 (2018) no. 2, p. 103 | DOI:10.2478/udt-2018-0014

Cité par 6 documents. Sources : Crossref

Commentaires - Politique