Let be an s-dimensional Halton's sequence. Let be the discrepancy of the sequence . It is known that as . In this paper, we prove that this estimate is exact:
Soit une suite de Halton á s dimensions. Soit la discrépance de la suite . Il est connu que lorsque . Dans cet article, nous montrons que cette estimation est exacte :
Accepted:
Published online:
Mordechay B. Levin 1
@article{CRMATH_2016__354_5_445_0, author = {Mordechay B. Levin}, title = {On the lower bound of the discrepancy of {Halton's} sequence {I}}, journal = {Comptes Rendus. Math\'ematique}, pages = {445--448}, publisher = {Elsevier}, volume = {354}, number = {5}, year = {2016}, doi = {10.1016/j.crma.2016.02.003}, language = {en}, }
Mordechay B. Levin. On the lower bound of the discrepancy of Halton's sequence I. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 445-448. doi : 10.1016/j.crma.2016.02.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.02.003/
[1] Irregularities of Distribution, Cambridge University Press, Cambridge, UK, 1987
[2] On Roth's orthogonal function method in discrepancy theory, Unif. Distrib. Theory, Volume 6 (2011) no. 1, pp. 143-184
[3] Sequences, Discrepancies and Applications, Lecture Notes in Mathematics, vol. 1651, 1997
[4] Minoration de discrépance en dimension deux, Acta Arith., Volume 76 (1996) no. 2, pp. 149-164
[5] On the lower bound in the lattice point remainder problem for a parallelepiped, Discrete Comput. Geom., Volume 54 (2015), pp. 826-870
[6] On the lower bound of the discrepancy of sequence II http://arXiv.org/abs/1505.04975
[7] On the lower bound of the discrepancy of Halton's sequence II, Eur. J. Math. (2016) (in press) | DOI
Cited by Sources:
Comments - Policy