[Sur la limite inférieure de la discrépance de la suite de Halton I]
Let
Soit
Accepté le :
Publié le :
Mordechay B. Levin 1
@article{CRMATH_2016__354_5_445_0, author = {Mordechay B. Levin}, title = {On the lower bound of the discrepancy of {Halton's} sequence {I}}, journal = {Comptes Rendus. Math\'ematique}, pages = {445--448}, publisher = {Elsevier}, volume = {354}, number = {5}, year = {2016}, doi = {10.1016/j.crma.2016.02.003}, language = {en}, }
Mordechay B. Levin. On the lower bound of the discrepancy of Halton's sequence I. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 445-448. doi : 10.1016/j.crma.2016.02.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.02.003/
[1] Irregularities of Distribution, Cambridge University Press, Cambridge, UK, 1987
[2] On Roth's orthogonal function method in discrepancy theory, Unif. Distrib. Theory, Volume 6 (2011) no. 1, pp. 143-184
[3] Sequences, Discrepancies and Applications, Lecture Notes in Mathematics, vol. 1651, 1997
[4] Minoration de discrépance en dimension deux, Acta Arith., Volume 76 (1996) no. 2, pp. 149-164
[5] On the lower bound in the lattice point remainder problem for a parallelepiped, Discrete Comput. Geom., Volume 54 (2015), pp. 826-870
[6] On the lower bound of the discrepancy of
[7] On the lower bound of the discrepancy of Halton's sequence II, Eur. J. Math. (2016) (in press) | DOI
- ON THE UPPER BOUND OF THE L
DISCREPANCY OF HALTON’S SEQUENCE AND THE CENTRAL LIMIT THEOREM FOR HAMMERSLEY’S NET, Journal of Mathematical Sciences, Volume 280 (2024) no. 6, p. 1002 | DOI:10.1007/s10958-024-07311-w - ON THE UPPER BOUND OF THE
DISCREPANCY OF HALTON’S SEQUENCE AND THE CENTRAL LIMIT THEOREM FOR HAMMERSLEY’S NET, II, Journal of Mathematical Sciences, Volume 280 (2024) no. 6, p. 1030 | DOI:10.1007/s10958-024-07312-9 - , Proceedings of the 2024 8th International Conference on Digital Signal Processing (2024), p. 146 | DOI:10.1145/3653876.3653889
- On a bounded remainder set for a digital Kronecker sequence, Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 1, p. 163 | DOI:10.5802/jtnb.1197
- A lower bound on the star discrepancy of generalized Halton sequences in rational bases, Proceedings of the American Mathematical Society, Volume 147 (2019) no. 11, p. 4655 | DOI:10.1090/proc/14596
- On M. B. Levin’s Proofs for The Exact Lower Discrepancy Bounds of Special Sequences and Point Sets (A Survey), Uniform distribution theory, Volume 13 (2018) no. 2, p. 103 | DOI:10.2478/udt-2018-0014
Cité par 6 documents. Sources : Crossref
Commentaires - Politique