Comptes Rendus
Number theory
On the lower bound of the discrepancy of Halton's sequence I
Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 445-448.

Let (Hs(n))n1 be an s-dimensional Halton's sequence. Let DN be the discrepancy of the sequence (Hs(n))n=1N. It is known that NDN=O(lnsN) as N. In this paper, we prove that this estimate is exact:

limNNlns(N)DN>0.

Soit (Hs(n))n1 une suite de Halton á s dimensions. Soit DN la discrépance de la suite (Hs(n))n=1N. Il est connu que NDN=O(lnsN) lorsque N. Dans cet article, nous montrons que cette estimation est exacte :

limNNlns(N)DN>0.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.02.003

Mordechay B. Levin 1

1 Department of Mathematics, Bar-Ilan University, Ramat-Gan, 52900, Israel
@article{CRMATH_2016__354_5_445_0,
     author = {Mordechay B. Levin},
     title = {On the lower bound of the discrepancy of {Halton's} sequence {I}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {445--448},
     publisher = {Elsevier},
     volume = {354},
     number = {5},
     year = {2016},
     doi = {10.1016/j.crma.2016.02.003},
     language = {en},
}
TY  - JOUR
AU  - Mordechay B. Levin
TI  - On the lower bound of the discrepancy of Halton's sequence I
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 445
EP  - 448
VL  - 354
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2016.02.003
LA  - en
ID  - CRMATH_2016__354_5_445_0
ER  - 
%0 Journal Article
%A Mordechay B. Levin
%T On the lower bound of the discrepancy of Halton's sequence I
%J Comptes Rendus. Mathématique
%D 2016
%P 445-448
%V 354
%N 5
%I Elsevier
%R 10.1016/j.crma.2016.02.003
%G en
%F CRMATH_2016__354_5_445_0
Mordechay B. Levin. On the lower bound of the discrepancy of Halton's sequence I. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 445-448. doi : 10.1016/j.crma.2016.02.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.02.003/

[1] J. Beck; W.W.L. Chen Irregularities of Distribution, Cambridge University Press, Cambridge, UK, 1987

[2] D. Bilyk On Roth's orthogonal function method in discrepancy theory, Unif. Distrib. Theory, Volume 6 (2011) no. 1, pp. 143-184

[3] M. Drmota; R. Tichy Sequences, Discrepancies and Applications, Lecture Notes in Mathematics, vol. 1651, 1997

[4] H. Faure; H. Chaix Minoration de discrépance en dimension deux, Acta Arith., Volume 76 (1996) no. 2, pp. 149-164

[5] M.B. Levin On the lower bound in the lattice point remainder problem for a parallelepiped, Discrete Comput. Geom., Volume 54 (2015), pp. 826-870

[6] M.B. Levin On the lower bound of the discrepancy of (t,s) sequence II http://arXiv.org/abs/1505.04975

[7] M.B. Levin On the lower bound of the discrepancy of Halton's sequence II, Eur. J. Math. (2016) (in press) | DOI

Cited by Sources:

Comments - Policy