Inspired by a description of the logarithmic space of Kato and Nakayama in terms of real oriented blowups, we describe Milnor fibrations and related constructions used by A'Campo in the language of logarithmic geometry.
Inspiré par une description de l'espace logarithmitique de Kato et Nakayama à l'aide des éclatements réels orientés, nous décrivons la fibration de Milnor et des constructions utilisées par A'Campo en termes de géométrie logarithmique.
Accepted:
Published online:
Thomas Cauwbergs 1
@article{CRMATH_2016__354_7_701_0, author = {Thomas Cauwbergs}, title = {Logarithmic geometry and the {Milnor} fibration}, journal = {Comptes Rendus. Math\'ematique}, pages = {701--706}, publisher = {Elsevier}, volume = {354}, number = {7}, year = {2016}, doi = {10.1016/j.crma.2016.04.005}, language = {en}, }
Thomas Cauwbergs. Logarithmic geometry and the Milnor fibration. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 701-706. doi : 10.1016/j.crma.2016.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.005/
[1] La fonction zêta d'une monodromie, Comment. Math. Helv., Volume 50 (1975), pp. 233-248
[2] Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over C, Kodai Math. J., Volume 22 (1999) no. 2, pp. 161-186
[3] A trace formula for rigid varieties, and motivic Weil generating series for formal schemes, Math. Ann., Volume 343 (2009) no. 2, pp. 285-349
[4] Motivic Serre invariants, ramification, and the analytic Milnor fiber, Invent. Math., Volume 168 (2007) no. 1, pp. 133-173
Cited by Sources:
Comments - Policy