Comptes Rendus
Algebraic geometry
Logarithmic geometry and the Milnor fibration
Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 701-706.

Inspired by a description of the logarithmic space of Kato and Nakayama in terms of real oriented blowups, we describe Milnor fibrations and related constructions used by A'Campo in the language of logarithmic geometry.

Inspiré par une description de l'espace logarithmitique de Kato et Nakayama à l'aide des éclatements réels orientés, nous décrivons la fibration de Milnor et des constructions utilisées par A'Campo en termes de géométrie logarithmique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.04.005

Thomas Cauwbergs 1

1 Department of Mathematics, Section of Algebra, Celestijnenlaan 200b – Box 2400, 3001 Leuven, Belgium
@article{CRMATH_2016__354_7_701_0,
     author = {Thomas Cauwbergs},
     title = {Logarithmic geometry and the {Milnor} fibration},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {701--706},
     publisher = {Elsevier},
     volume = {354},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crma.2016.04.005},
     language = {en},
}
TY  - JOUR
AU  - Thomas Cauwbergs
TI  - Logarithmic geometry and the Milnor fibration
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 701
EP  - 706
VL  - 354
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2016.04.005
LA  - en
ID  - CRMATH_2016__354_7_701_0
ER  - 
%0 Journal Article
%A Thomas Cauwbergs
%T Logarithmic geometry and the Milnor fibration
%J Comptes Rendus. Mathématique
%D 2016
%P 701-706
%V 354
%N 7
%I Elsevier
%R 10.1016/j.crma.2016.04.005
%G en
%F CRMATH_2016__354_7_701_0
Thomas Cauwbergs. Logarithmic geometry and the Milnor fibration. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 701-706. doi : 10.1016/j.crma.2016.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.005/

[1] Norbert A'Campo La fonction zêta d'une monodromie, Comment. Math. Helv., Volume 50 (1975), pp. 233-248

[2] Kazuya Kato; Chikara Nakayama Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over C, Kodai Math. J., Volume 22 (1999) no. 2, pp. 161-186

[3] Johannes Nicaise A trace formula for rigid varieties, and motivic Weil generating series for formal schemes, Math. Ann., Volume 343 (2009) no. 2, pp. 285-349

[4] Johannes Nicaise; Julien Sebag Motivic Serre invariants, ramification, and the analytic Milnor fiber, Invent. Math., Volume 168 (2007) no. 1, pp. 133-173

Cited by Sources:

Comments - Policy