Comptes Rendus
Functional analysis
On connected Lie groups and the approximation property
Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 697-699.

Recently, a complete characterization of connected Lie groups with the Approximation Property was given. The proof used the newly introduced property (T). We present here a short proof of the same result avoiding the use of property (T). Using property (T), however, the characterization is extended to almost connected locally compact groups. We end with some remarks about the difficulty of going beyond the almost connected case.

Une caractérisation complète des groupes de Lie connexes avec la propriété d'approximation a été obtenue récemment. La preuve utilisait la propriété (T), nouvellement introduite. Nous présentons ici une preuve courte du même résultat sans utiliser la propriété (T). En utilisant (T), cependant, la caractérisation est étendue aux groupes localement compacts presque connexes. Nous concluons avec quelques remarques sur la difficulté d'aller au-delà du cas presque connexe.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.04.007

Søren Knudby 1

1 Mathematical Institute, University of Münster, Einsteinstraße 62, 48149 Münster, Germany
@article{CRMATH_2016__354_7_697_0,
     author = {S{\o}ren Knudby},
     title = {On connected {Lie} groups and the approximation property},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {697--699},
     publisher = {Elsevier},
     volume = {354},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crma.2016.04.007},
     language = {en},
}
TY  - JOUR
AU  - Søren Knudby
TI  - On connected Lie groups and the approximation property
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 697
EP  - 699
VL  - 354
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2016.04.007
LA  - en
ID  - CRMATH_2016__354_7_697_0
ER  - 
%0 Journal Article
%A Søren Knudby
%T On connected Lie groups and the approximation property
%J Comptes Rendus. Mathématique
%D 2016
%P 697-699
%V 354
%N 7
%I Elsevier
%R 10.1016/j.crma.2016.04.007
%G en
%F CRMATH_2016__354_7_697_0
Søren Knudby. On connected Lie groups and the approximation property. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 697-699. doi : 10.1016/j.crma.2016.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.007/

[1] G. Arzhantseva; D. Osajda Graphical small cancellation groups with the Haagerup property, 2014 (preprint) | arXiv

[2] N. Brown; N. Ozawa C-Algebras and Finite-Dimensional Approximations, Grad. Stud. Math., vol. 88, American Mathematical Society, Providence, RI, USA, 2008

[3] M. Cowling; U. Haagerup Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math., Volume 96 (1989) no. 3, pp. 507-549

[4] J. de Cannière; U. Haagerup Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math., Volume 107 (1985) no. 2, pp. 455-500

[5] P. Eymard L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. Fr., Volume 92 (1964), pp. 181-236

[6] U. Haagerup; T. de Laat Simple Lie groups without the approximation property, Duke Math. J., Volume 162 (2013) no. 5, pp. 925-964

[7] U. Haagerup; T. de Laat Simple Lie groups without the approximation property, Trans. Amer. Math. Soc., Volume 368 (2016) no. 6, pp. 3777-3809

[8] U. Haagerup; S. Knudby; T. de Laat A complete characterization of connected Lie groups with the approximation property, Ann. Sci. Éc. Norm. Super., Volume 49 (2016) no. 4 (preprint, 2014) | arXiv

[9] U. Haagerup; J. Kraus Approximation properties for group C-algebras and group von Neumann algebras, Trans. Amer. Math. Soc., Volume 344 (1994) no. 2, pp. 667-699

[10] V. Lafforgue; M. de la Salle Noncommutative Lp-spaces without the completely bounded approximation property, Duke Math. J., Volume 160 (2011) no. 1, pp. 71-116

[11] M. Lemvig Hansen Weak amenability of the universal covering group of SU(1,n), Math. Ann., Volume 288 (1990) no. 3, pp. 445-472

[12] D. Montgomery; L. Zippin Topological Transformation Groups, Interscience Publishers, New York–London, 1955

[13] G.D. Mostow The extensibility of local Lie groups of transformations and groups on surfaces, Ann. of Math. (2), Volume 52 (1950), pp. 606-636

[14] D. Osajda Small cancellation labellings of some infinite graphs and applications, 2014 (preprint) | arXiv

[15] V.S. Varadarajan Lie Groups, Lie Algebras, and Their Representations, Grad. Texts Math., vol. 102, Springer-Verlag, New York, 1984 (reprint of the 1974 edition)

Cited by Sources:

Comments - Policy