We extend a result of Bergman to show that any object in an arbitrary Grothendieck category may be expressed as an inverse limit of injectives. We also study inverse systems of κ-injective objects, where κ is an infinite regular cardinal.
Nous étendons un résultat de Bergman en montrant qu'on peut exprimer chaque objet dans une catégorie de Grothendieck comme la limite d'un système inverse d'objets injectifs. Nous étudions aussi les systèmes inverses d'objets κ-injectifs, où κ est un cardinal régulier infini.
Accepted:
Published online:
Abhishek Banerjee 1
@article{CRMATH_2016__354_7_665_0, author = {Abhishek Banerjee}, title = {Some remarks on a theorem of {Bergman}}, journal = {Comptes Rendus. Math\'ematique}, pages = {665--670}, publisher = {Elsevier}, volume = {354}, number = {7}, year = {2016}, doi = {10.1016/j.crma.2016.05.005}, language = {en}, }
Abhishek Banerjee. Some remarks on a theorem of Bergman. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 665-670. doi : 10.1016/j.crma.2016.05.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.005/
[1] Locally Presentable and Accessible Categories, LMS Lecture Notes, vol. 189, Cambridge University Press, 1994
[2] Chain Conditions in Modular Lattices with Applications to Grothendieck Categories and Torsion Theories, Monograph Series of the Parana's Mathematical Society, vol. 1, 2015
[3] Théorie des topos et cohomologie étale des schémas (SGA4), Lecture Notes in Mathematics, vol. 269, Springer-Verlag, 1972
[4] Every module is an inverse limit of injectives, Proc. Amer. Math. Soc., Volume 141 (2013), pp. 1177-1183
[5] Théorie de Hodge. II, Publ. Math. IHÉS, Volume 40 (1971), pp. 5-57
[6] Sur quelques points d'algèbre homologique, Tohoku Math. J. (2), Volume 9 (1957), pp. 119-221
[7] On the existence of non-trivial finitely injective modules, Forum Math., Volume 26 (2014) no. 6, pp. 1629-1633
[8] On inverse systems with trivial limits, J. Lond. Math. Soc., Volume 29 (1954), pp. 233-236
[9] Model category structures on chain complexes of sheaves, Trans. Amer. Math. Soc., Volume 353 (2001) no. 6, pp. 2441-2457
[10] Complexe cotangent et déformations. I, Lecture Notes in Mathematics, vol. 239, Springer-Verlag, 1971
[11] Locally finitely presented categories of sheaves of modules, University of Manchester, UK, 2010 (Manchester Institute for Mathematical Sciences Eprint 2010.21)
[12] On finitely injective modules, J. Aust. Math. Soc., Volume 16 (1973), pp. 239-248
[13] On finitely injective modules and locally pure-injective modules over Prüfer domains, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 3485-3493
[14] http://stacks.math.columbia.edu (The Stacks project, available at:)
[15] Quasi-Abelian categories and sheaves, Mém. Soc. Math. Fr. (N.S.), Volume 76 (1999)
[16] Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften, vol. 217, Springer-Verlag, New York, 1975
Cited by Sources:
Comments - Policy