Comptes Rendus
Algebra/Homological algebra
Some remarks on a theorem of Bergman
Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 665-670.

We extend a result of Bergman to show that any object in an arbitrary Grothendieck category may be expressed as an inverse limit of injectives. We also study inverse systems of κ-injective objects, where κ is an infinite regular cardinal.

Nous étendons un résultat de Bergman en montrant qu'on peut exprimer chaque objet dans une catégorie de Grothendieck comme la limite d'un système inverse d'objets injectifs. Nous étudions aussi les systèmes inverses d'objets κ-injectifs, où κ est un cardinal régulier infini.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.05.005
Abhishek Banerjee 1

1 Max-Planck-Institut für Mathematik, Vivatsgasse 7, Bonn, Germany
@article{CRMATH_2016__354_7_665_0,
     author = {Abhishek Banerjee},
     title = {Some remarks on a theorem of {Bergman}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {665--670},
     publisher = {Elsevier},
     volume = {354},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crma.2016.05.005},
     language = {en},
}
TY  - JOUR
AU  - Abhishek Banerjee
TI  - Some remarks on a theorem of Bergman
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 665
EP  - 670
VL  - 354
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2016.05.005
LA  - en
ID  - CRMATH_2016__354_7_665_0
ER  - 
%0 Journal Article
%A Abhishek Banerjee
%T Some remarks on a theorem of Bergman
%J Comptes Rendus. Mathématique
%D 2016
%P 665-670
%V 354
%N 7
%I Elsevier
%R 10.1016/j.crma.2016.05.005
%G en
%F CRMATH_2016__354_7_665_0
Abhishek Banerjee. Some remarks on a theorem of Bergman. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 665-670. doi : 10.1016/j.crma.2016.05.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.005/

[1] J. Adámek; J. Rosický Locally Presentable and Accessible Categories, LMS Lecture Notes, vol. 189, Cambridge University Press, 1994

[2] T. Albu Chain Conditions in Modular Lattices with Applications to Grothendieck Categories and Torsion Theories, Monograph Series of the Parana's Mathematical Society, vol. 1, 2015

[3] M. Artin; A. Grothendieck; J.-L. Verdier Théorie des topos et cohomologie étale des schémas (SGA4), Lecture Notes in Mathematics, vol. 269, Springer-Verlag, 1972

[4] G.M. Bergman Every module is an inverse limit of injectives, Proc. Amer. Math. Soc., Volume 141 (2013), pp. 1177-1183

[5] P. Deligne Théorie de Hodge. II, Publ. Math. IHÉS, Volume 40 (1971), pp. 5-57

[6] A. Grothendieck Sur quelques points d'algèbre homologique, Tohoku Math. J. (2), Volume 9 (1957), pp. 119-221

[7] P.A. Guil Asensio; M.C. Izurdiaga; B. Torrecillas On the existence of non-trivial finitely injective modules, Forum Math., Volume 26 (2014) no. 6, pp. 1629-1633

[8] G. Higman; A.H. Stone On inverse systems with trivial limits, J. Lond. Math. Soc., Volume 29 (1954), pp. 233-236

[9] M. Hovey Model category structures on chain complexes of sheaves, Trans. Amer. Math. Soc., Volume 353 (2001) no. 6, pp. 2441-2457

[10] L. Illusie Complexe cotangent et déformations. I, Lecture Notes in Mathematics, vol. 239, Springer-Verlag, 1971

[11] M. Prest; A. Ralph Locally finitely presented categories of sheaves of modules, University of Manchester, UK, 2010 (Manchester Institute for Mathematical Sciences Eprint 2010.21)

[12] V.S. Ramamurthi; K.M. Rangaswamy On finitely injective modules, J. Aust. Math. Soc., Volume 16 (1973), pp. 239-248

[13] L. Salce On finitely injective modules and locally pure-injective modules over Prüfer domains, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 3485-3493

[14] http://stacks.math.columbia.edu (The Stacks project, available at:)

[15] J.-P. Schneiders Quasi-Abelian categories and sheaves, Mém. Soc. Math. Fr. (N.S.), Volume 76 (1999)

[16] B. Stenström Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften, vol. 217, Springer-Verlag, New York, 1975

Cited by Sources:

Comments - Policy


Articles of potential interest

A construction of semisimple tensor categories

Friedrich Knop

C. R. Math (2006)


On a conjecture of Lionel Schwartz about the eigenvalues of Lannes' T-functor

Nguyen Dang Ho Hai

C. R. Math (2015)


A derived functor approach to bounded cohomology

Theo Bühler

C. R. Math (2008)