We prove that the mixed André–Oort conjecture holds for any mixed Shimura variety if a lower bound for the size of Galois orbits of special points in pure Shimura varieties exists. This generalizes the current results for mixed Shimura varieties of Abelian type.
Nous démontrons la conjecture d'André–Oort pour toutes les variétés de Shimura mixtes, sous une borne inférieure pour la taille de orbites galoisiennes des points spéciaux. Ceci généralise les résultats connus pour les variétés de Shimura mixtes de type abélien.
Accepted:
Published online:
Ziyang Gao 1
@article{CRMATH_2016__354_7_659_0, author = {Ziyang Gao}, title = {About the mixed {Andr\'e{\textendash}Oort} conjecture: {Reduction} to a lower bound for the pure case}, journal = {Comptes Rendus. Math\'ematique}, pages = {659--663}, publisher = {Elsevier}, volume = {354}, number = {7}, year = {2016}, doi = {10.1016/j.crma.2016.01.024}, language = {en}, }
Ziyang Gao. About the mixed André–Oort conjecture: Reduction to a lower bound for the pure case. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 659-663. doi : 10.1016/j.crma.2016.01.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.024/
[1] Degrees of strongly special subvarieties and the Andre–Oort conjecture, J. Reine Angew. Math. (2014) (online) | DOI
[2] Heights of pre-special points of Shimura varieties, Math. Ann. (2015) (online)
[3] Special points on the product of two modular curves, Compos. Math., Volume 114 (1998) no. 3, pp. 315-328
[4] Towards the André–Oort conjecture for mixed Shimura varieties: the Ax–Lindemann theorem and lower bounds for Galois orbits of special points, J. Reine Angew. Math. (2015) (online) | DOI
[5] A special point problem of André–Pink–Zannier in the universal family of Abelian varieties, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (2016) (in press) | DOI
[6] The hyperbolic Ax–Lindemann–Weierstrass conjecture, Publ. Math. Inst. Hautes Études Sci. (2016) (in press) | DOI
[7] The André–Oort conjecture, Ann. Math. (2), Volume 180 (2014), pp. 867-925
[8] O-minimality and the André–Oort conjecture for , Ann. Math. (2), Volume 173 (2011), pp. 1779-1840
[9] The André–Oort conjecture for the moduli space of Abelian surfaces, Compos. Math., Volume 149 (February 2013), pp. 204-216
[10] Ax–Lindemann for , Ann. Math. (2), Volume 179 (2014), pp. 659-681
[11] Rational points in periodic analytic sets and the Manin–Mumford conjecture, Rend. Mat. Accad. Lincei, Volume 19 (2008), pp. 149-162
[12] Arithmetical compactification of mixed Shimura varieties, Bonner Mathematische Schriften, 1989 (PhD thesis)
[13] Brauer–Siegel for arithmetic tori and lower bounds for Galois orbits of special points, J. Amer. Math. Soc., Volume 25 (2012), pp. 1091-1117
[14] Quelques applications du théorème de Ax–Lindemann hyperbolique, Compos. Math., Volume 150 (2014), pp. 175-190
[15] Galois orbits and equidistribution of special subvarieties: towards the André–Oort conjecture, Ann. Math. (2), Volume 180 (2014), pp. 823-865
[16] Nombre de classes des tores de multiplication complexe et bornes inférieures pour orbites Galoisiennes de points spéciaux, Bull. Soc. Math. Fr., Volume 143 (2015), pp. 197-228
[17] Some Problems of Unlikely Intersections in Arithmetic and Geometry (with Appendixes by D. Masser), Annals of Mathematics Studies, vol. 181, Princeton University Press, Princeton, NJ, USA, 2012
Cited by Sources:
Comments - Policy