In this note, under an additional condition, we present an alternative proof of a stability theorem for the boundary asymptotics of the Bergman kernel due to T. Ohsawa. Our method relies on the localization of the minimum integral related to the weighted Bergman kernel.
Dans cette note, nous présentons, sous une certaine condition additionnelle, une preuve alternative d'un théorème de stabilité pour le comportement asymptotique à la frontière du noyau de Bergman, démontré antérieurement par T. Ohsawa. Notre méthode s'appuie sur la localisation de l'intégrale minimale liée au noyau de Bergman à poids.
Accepted:
Published online:
Hyeseon Kim 1
@article{CRMATH_2017__355_4_420_0, author = {Hyeseon Kim}, title = {On the localization of the minimum integral related to the weighted {Bergman} kernel and its application}, journal = {Comptes Rendus. Math\'ematique}, pages = {420--425}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.03.005}, language = {en}, }
TY - JOUR AU - Hyeseon Kim TI - On the localization of the minimum integral related to the weighted Bergman kernel and its application JO - Comptes Rendus. Mathématique PY - 2017 SP - 420 EP - 425 VL - 355 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2017.03.005 LA - en ID - CRMATH_2017__355_4_420_0 ER -
Hyeseon Kim. On the localization of the minimum integral related to the weighted Bergman kernel and its application. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 420-425. doi : 10.1016/j.crma.2017.03.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.005/
[1] Suita conjecture and Ohsawa–Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158
[2] The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., Volume 26 (1974), pp. 1-65
[3] On the Ohsawa–Takegoshi extension theorem and the Bochner–Kodaira identity with non-smooth twist factor, J. Math. Pures Appl., Volume 97 (2012) no. 6, pp. 579-601
[4] An Introduction to Complex Analysis in Several Variables, N.-Holl. Math. Libr., vol. 7, North-Holland Publishing Co., Amsterdam, 1990 (xii+254 p)
[5] Boundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domains, Pac. J. Math., Volume 176 (1996) no. 1, pp. 141-163
[6] Forelli–Rudin constructions and weighted Bergman projections, Stud. Math., Volume 94 (1989) no. 3, pp. 257-272
[7] Application and simplified proof of a sharp extension theorem, Nagoya Math. J., Volume 220 (2015), pp. 81-89
[8] On the extension of holomorphic functions, Math. Z., Volume 195 (1987) no. 2, pp. 197-204
Cited by Sources:
Comments - Policy