[Remarques sur les fibrés ACM de rang supérieur sur les hypersurfaces]
En termes de nombre de générateurs, le fibré de rang 3 arithmétiquement Cohen–Macaulay, non décomposé, le plus simple sur une hypersurface de
In terms of the number of generators, one of the simplest non-split rank-3 arithmetically Cohen–Macaulay bundles on a smooth hypersurface in
Accepté le :
Publié le :
Girivaru V. Ravindra 1 ; Amit Tripathi 2
@article{CRMATH_2018__356_11-12_1215_0, author = {Girivaru V. Ravindra and Amit Tripathi}, title = {Remarks on higher-rank {ACM} bundles on hypersurfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {1215--1221}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.10.004}, language = {en}, }
Girivaru V. Ravindra; Amit Tripathi. Remarks on higher-rank ACM bundles on hypersurfaces. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1215-1221. doi : 10.1016/j.crma.2018.10.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.10.004/
[1] Determinantal hypersurfaces, Dedicated to William Fulton on the occasion of his 60th birthday, Mich. Math. J., Volume 48 (2000), pp. 39-64
[2] Arithmetically Cohen–Macaulay bundles on complete intersection varieties of sufficiently high multi-degree, Math. Z., Volume 265 (2010) no. 3, pp. 493-509
[3] Cohen–Macaulay modules on hypersurface singularities II, Invent. Math., Volume 88 (1987), pp. 165-182
[4] ACM bundles on general hypersurfaces in
[5] Some Applications of Vector Bundles in Algebraic Geometry, 2013 (Habilitation à diriger des recherches)
[6] Vector bundles on the punctured spectrum of a local ring, Proc. Lond. Math. Soc. (3), Volume 14 (1964), pp. 689-713
[7] Deformation of schemes defined by vanishing of Pfaffians, J. Algebra, Volume 53 (1978) no. 1, pp. 84-92
[8] Cohen–Macaulay modules on hypersurface singularities, I, Invent. Math., Volume 88 (1987) no. 1, pp. 153-164
[9] Arithmetically Cohen–Macaulay bundles on hypersurfaces, Comment. Math. Helv., Volume 82 (2007) no. 4, pp. 829-843
[10] Arithmetically Cohen–Macaulay bundles on three dimensional hypersurfaces, Int. Math. Res. Not., Volume 2007 (2007) no. 8
[11] On codimension two subvarieties of hypersurfaces, Motives and Algebraic Cycles, Fields Inst. Commun., vol. 56, Amer. Math. Soc., Providence, RI, 2009, pp. 167-174
[12] Curves on threefolds and a conjecture of Griffiths–Harris, Math. Ann., Volume 345 (2009) no. 3, pp. 731-748
[13] G.V. Ravindra, Topics in the geometry of vector bundles, Proposal submitted to the NSF, 2009.
[14] Extensions of vector bundles with application to Noether–Lefschetz theorems, Commun. Contemp. Math., Volume 15 (2013) no. 5
[15] Torsion points and matrices defining elliptic curves, Int. J. Algebra Comput., Volume 24 (2014) no. 06, pp. 879-891
[16] Splitting of low-rank ACM bundles on hypersurfaces of high dimension, Commun. Algebra, Volume 44 (2016) no. 3, pp. 1011-1017
[17] Rank 3 arithmetically Cohen–Macaulay bundles over hypersurfaces, J. Algebra, Volume 478 (2017), pp. 1-11
Cité par Sources :
Commentaires - Politique