Comptes Rendus
Algebraic geometry
Remarks on higher-rank ACM bundles on hypersurfaces
Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1215-1221.

In terms of the number of generators, one of the simplest non-split rank-3 arithmetically Cohen–Macaulay bundles on a smooth hypersurface in P5 is 6-generated. We prove that a general hypersurface in P5 of degree d3 does not support such a bundle. We also prove that a smooth positive dimensional hypersurface in projective space of even degree does not support an Ulrich bundle of odd rank and determinant of the form OX(c) for some integer c. This verifies some cases of conjectures we discuss here.

En termes de nombre de générateurs, le fibré de rang 3 arithmétiquement Cohen–Macaulay, non décomposé, le plus simple sur une hypersurface de P5, est engendré en rang 6. Nous montrons qu'une hypersurface générale dans P5, de degré d3, n'admet pas un tel fibré. Nous montrons également qu'une hypersurface lisse de dimension positive dans un espace projectif, de degré pair, n'admet pas de faisceau d'Ulrich de rang impair. Ceci permet de vérifier quelques cas de conjectures, que nous discutons ici.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.10.004

Girivaru V. Ravindra 1; Amit Tripathi 2

1 Department of Mathematics, University of Missouri – St. Louis, St. Louis, MO 63121, USA
2 Department of Mathematics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad – 502285, Telangana, India
@article{CRMATH_2018__356_11-12_1215_0,
     author = {Girivaru V. Ravindra and Amit Tripathi},
     title = {Remarks on higher-rank {ACM} bundles on hypersurfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1215--1221},
     publisher = {Elsevier},
     volume = {356},
     number = {11-12},
     year = {2018},
     doi = {10.1016/j.crma.2018.10.004},
     language = {en},
}
TY  - JOUR
AU  - Girivaru V. Ravindra
AU  - Amit Tripathi
TI  - Remarks on higher-rank ACM bundles on hypersurfaces
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 1215
EP  - 1221
VL  - 356
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2018.10.004
LA  - en
ID  - CRMATH_2018__356_11-12_1215_0
ER  - 
%0 Journal Article
%A Girivaru V. Ravindra
%A Amit Tripathi
%T Remarks on higher-rank ACM bundles on hypersurfaces
%J Comptes Rendus. Mathématique
%D 2018
%P 1215-1221
%V 356
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2018.10.004
%G en
%F CRMATH_2018__356_11-12_1215_0
Girivaru V. Ravindra; Amit Tripathi. Remarks on higher-rank ACM bundles on hypersurfaces. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1215-1221. doi : 10.1016/j.crma.2018.10.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.10.004/

[1] A. Beauville Determinantal hypersurfaces, Dedicated to William Fulton on the occasion of his 60th birthday, Mich. Math. J., Volume 48 (2000), pp. 39-64

[2] J. Biswas; G.V. Ravindra Arithmetically Cohen–Macaulay bundles on complete intersection varieties of sufficiently high multi-degree, Math. Z., Volume 265 (2010) no. 3, pp. 493-509

[3] R.-O. Buchweitz; G.-M. Greuel; F.-O. Schreyer Cohen–Macaulay modules on hypersurface singularities II, Invent. Math., Volume 88 (1987), pp. 165-182

[4] L. Chiantini; C.K. Madonna ACM bundles on general hypersurfaces in P5 of low degree, Collect. Math., Volume 56 (2005) no. 1, pp. 85-96

[5] D. Faenzi Some Applications of Vector Bundles in Algebraic Geometry, 2013 (Habilitation à diriger des recherches)

[6] G. Horrocks Vector bundles on the punctured spectrum of a local ring, Proc. Lond. Math. Soc. (3), Volume 14 (1964), pp. 689-713

[7] H. Kleppe Deformation of schemes defined by vanishing of Pfaffians, J. Algebra, Volume 53 (1978) no. 1, pp. 84-92

[8] H. Knörrer Cohen–Macaulay modules on hypersurface singularities, I, Invent. Math., Volume 88 (1987) no. 1, pp. 153-164

[9] N. Mohan Kumar; A.P. Rao; G.V. Ravindra Arithmetically Cohen–Macaulay bundles on hypersurfaces, Comment. Math. Helv., Volume 82 (2007) no. 4, pp. 829-843

[10] N. Mohan Kumar; A.P. Rao; G.V. Ravindra Arithmetically Cohen–Macaulay bundles on three dimensional hypersurfaces, Int. Math. Res. Not., Volume 2007 (2007) no. 8

[11] N. Mohan Kumar; A.P. Rao; G.V. Ravindra On codimension two subvarieties of hypersurfaces, Motives and Algebraic Cycles, Fields Inst. Commun., vol. 56, Amer. Math. Soc., Providence, RI, 2009, pp. 167-174

[12] G.V. Ravindra Curves on threefolds and a conjecture of Griffiths–Harris, Math. Ann., Volume 345 (2009) no. 3, pp. 731-748

[13] G.V. Ravindra, Topics in the geometry of vector bundles, Proposal submitted to the NSF, 2009.

[14] G.V. Ravindra; A. Tripathi Extensions of vector bundles with application to Noether–Lefschetz theorems, Commun. Contemp. Math., Volume 15 (2013) no. 5

[15] G.V. Ravindra; A. Tripathi Torsion points and matrices defining elliptic curves, Int. J. Algebra Comput., Volume 24 (2014) no. 06, pp. 879-891

[16] A. Tripathi Splitting of low-rank ACM bundles on hypersurfaces of high dimension, Commun. Algebra, Volume 44 (2016) no. 3, pp. 1011-1017

[17] A. Tripathi Rank 3 arithmetically Cohen–Macaulay bundles over hypersurfaces, J. Algebra, Volume 478 (2017), pp. 1-11

Cited by Sources:

Comments - Policy