The goal of this paper is to investigate the topological structure of open simply connected 3-manifolds whose scalar curvature has a slow decay at infinity. In particular, we show that the Whitehead manifold does not admit a complete metric whose scalar curvature decays slowly, and in fact that any contractible complete 3-manifolds with such a metric is diffeomorphic to . Furthermore, using this result, we prove that any open simply connected 3-manifold M with and a complete metric as above is diffeomorphic to .
Le but de cet article est d'étudier la structure topologique de 3-variétés simplement connexes ouvertes dont la courbure scalaire présente une décroissance lente à l'infini. En particulier, nous montrons que la variété de Whitehead n'admet pas de métrique complète dont la courbure scalaire décroît lentement, et qu'en fait toute 3-variété contractible complète avec une telle métrique est difféomorphe à . De plus, en utilisant ce résultat, nous montrons que toute 3-variété ouverte simplement connexe M telle que , munie d'une métrique complète comme celle ci-dessus, est difféomorphe à .
Accepted:
Published online:
Jian Wang 1
@article{CRMATH_2019__357_3_284_0, author = {Jian Wang}, title = {Simply connected open 3-manifolds with slow decay of positive scalar curvature}, journal = {Comptes Rendus. Math\'ematique}, pages = {284--290}, publisher = {Elsevier}, volume = {357}, number = {3}, year = {2019}, doi = {10.1016/j.crma.2019.02.001}, language = {en}, }
Jian Wang. Simply connected open 3-manifolds with slow decay of positive scalar curvature. Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 284-290. doi : 10.1016/j.crma.2019.02.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.02.001/
[1] The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc., Volume 69 (1962), pp. 422-433
[2] Singularité générique des applications différentiables de la 2-sphère dans une 3-variété différentiable, Ann. Inst. Fourier (Grenoble), Volume 21 (1971) no. 3, pp. 151-172
[3] Taming 3-manifolds using scalar curvature, Geom. Dedic., Volume 148 (2010), pp. 3-14
[4] Solution of the problem of Plateau, Trans. Amer. Math. Soc., Volume 32 (1932), pp. 731-756
[5] The positive scalar curvature and the Dirac operator on the complete Riemannian manifolds, Publ. Math. IHÉS, Volume 58 (1984), pp. 83-196
[6] Regularity of minimizing surfaces of prescribed mean curvature, Ann. of Math. (2), Volume 97 (1973), pp. 275-305
[7] 3-Manifolds with nonnegative Ricci curvature, Invent. Math., Volume 193 (2013) no. 2, pp. 367-375
[8] The problem of Plateau in a Riemannian manifold, Ann. of Math. (2), Volume 49 (1948), pp. 807-851
[9] Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966
[10] A proof of the regularity everywhere of the classical solution to Plateau's problem, Ann. of Math. (2), Volume 91 (1970), pp. 550-569
[11] On Dehn's lemma and asphericity of knots, Ann. of Math. (2), Volume 66 (1957) no. 1, pp. 1-26
[12] The entropy formula for Ricci flow and its geometric applications | arXiv
[13] Ricci flow with surgery on the three manifolds | arXiv
[14] Finite extinction time for the solution to Ricci flow on certain three-manifolds | arXiv
[15] On Plateau's problem, Ann. of Math. (2), Volume 31 (1930), pp. 457-469
[16] Constant mean curvature surface in homogenously regular 3-manifold, Bull. Austral. Math. Soc., Volume 74 (2006), pp. 227-238
[17] On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., Volume 65 (1979), pp. 45-76
[18] Proof of the positive mass theorem. II, Commun. Math. Phys., Volume 79 (1981), pp. 231-260
[19] Complete three-dimensional manifold with positive Ricci curvature and scalar curvature, Seminar on Differential Geometry, Annals of Mathematics Studies, vol. 102, Princeton University Press, Princeton, NJ, USA, 1982, pp. 209-228
[20] Group Theory and Three-Dimensional Manifolds, Yale University Press, New Haven, 1971
[21] A certain open manifold whose group is unity, Quart. J. Math. Oxford, Volume 6 (1935), pp. 268-279
Cited by Sources:
Comments - Policy