Comptes Rendus
Article de recherche - Théorie des nombres
On Erdős sums of almost primes
[Sur les sommes d’Erdős de presque premiers]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1571-1596.

En 1935, Erdős a prouvé que les sommes f k = n 1/(nlogn), portant sur les entiers n ayant exactement k facteurs premiers, sont majorées par une constante absolue, et en 1993, Zhang a prouvé que f k est maximisé par la somme sur les nombres premiers f 1 = p 1/(plogp). Selon une conjecture de Banks et Martin de 2013, les sommes f k devraient être décroissantes en fonction de k. Dans cet article, nous démontrons que les sommes restreintes aux entiers impairs sont bien décroissantes pour k suffisamment grand. En revanche, contrairement à la conjecture, nous prouvons que les sommes f k sont croissantes en fonction de k, suffisamment grand. Notre résultat principal donne une formule asymptotique pour f k qui identifie le terme secondaire (négatif), à savoir f k =1-(a+o(1))k 2 /2 k pour une constante explicite a=0,0656. Ceci est prouvé par une méthode raffinée combinant analyse réelle et complexe, alors que les résultats classiques de Sathe et Selberg sur les produits de k nombres premiers impliquent l’estimation plus faible f k =1+O ε (k ε-1/2 ). De plus, nous donnons un argument probabiliste alternatif, lié à la distribution de Dickman. Ici, la preuve se réduit à démontrer qu’une suite d’intégrales converge exponentiellement rapidement vers e -γ , ce qui peut présenter un intérêt indépendant.

In 1935, Erdős proved that the sums f k = n 1/(nlogn), over integers n with exactly k prime factors, are bounded by an absolute constant, and in 1993 Zhang proved that f k is maximized by the prime sum f 1 = p 1/(plogp). According to a 2013 conjecture of Banks and Martin, the sums f k are predicted to decrease monotonically in k. In this article, we show that the sums restricted to odd integers are indeed monotonically decreasing in k, sufficiently large. By contrast, contrary to the conjecture we prove that the sums f k increase monotonically in k, sufficiently large.

Our main result gives an asymptotic for f k which identifies the (negative) secondary term, namely f k =1-(a+o(1))k 2 /2 k for an explicit constant a=0.0656. This is proven by a refined method combining real and complex analysis, whereas the classical results of Sathe and Selberg on products of k primes imply the weaker estimate f k =1+O ε (k ε-1/2 ). We also give an alternate, probability-theoretic argument related to the Dickman distribution. Here the proof reduces to showing a sequence of integrals converges exponentially quickly e -γ , which may be of independent interest.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.650
Classification : 11N25, 11Y60, 11A05, 60G18, 60H25
Keywords: Almost primes, primitive set, Dickman distribution, recursive distributional equation
Mots-clés : Nombres presque premiers, ensemble primitif, loi de Dickman, équation en loi récursive

Ofir Gorodetsky 1, 2 ; Jared Duker Lichtman 3 ; Mo Dick Wong 4

1 Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
2 Department of Mathematics, Technion – Israel Institute of Technology, Haifa 3200003, Israel
3 Department of Mathematics, Stanford University, Stanford, CA, USA
4 Department of Mathematical Sciences, Durham University, Stockton Road, Durham DH1 3LE, UK
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1571_0,
     author = {Ofir Gorodetsky and Jared Duker Lichtman and Mo Dick Wong},
     title = {On {Erd\H{o}s} sums of almost primes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1571--1596},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.650},
     language = {en},
}
TY  - JOUR
AU  - Ofir Gorodetsky
AU  - Jared Duker Lichtman
AU  - Mo Dick Wong
TI  - On Erdős sums of almost primes
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1571
EP  - 1596
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.650
LA  - en
ID  - CRMATH_2024__362_G12_1571_0
ER  - 
%0 Journal Article
%A Ofir Gorodetsky
%A Jared Duker Lichtman
%A Mo Dick Wong
%T On Erdős sums of almost primes
%J Comptes Rendus. Mathématique
%D 2024
%P 1571-1596
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.650
%G en
%F CRMATH_2024__362_G12_1571_0
Ofir Gorodetsky; Jared Duker Lichtman; Mo Dick Wong. On Erdős sums of almost primes. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1571-1596. doi : 10.5802/crmath.650. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.650/

[1] Jonathan Bayless; Paul Kinlaw; Jared Duker Lichtman Higher Mertens constants for almost primes, J. Number Theory, Volume 234 (2022), pp. 448-475 | DOI | MR | Zbl

[2] William D. Banks; Greg Martin Optimal primitive sets with restricted primes, Integers, Volume 13 (2013), A69, 10 pages | MR | Zbl

[3] Jean-Marie-François Chamayou A probabilistic approach to a differential-difference equation arising in analytic number theory, Math. Comput., Volume 27 (1973), pp. 197-203 | DOI | MR | Zbl

[4] Tsz Ho Chan; Jared Duker Lichtman; Carl Pomerance A generalization of primitive sets and a conjecture of Erdős, Discrete Anal., Volume 2020 (2020), 16, 13 pages | DOI | MR | Zbl

[5] Tsz Ho Chan; Jared Duker Lichtman; Carl Pomerance On the critical exponent for k-primitive sets, Combinatorica, Volume 42 (2022) no. 5, pp. 729-747 | DOI | MR | Zbl

[6] Paul Erdős Note on Sequences of Integers No One of Which is Divisible By Any Other, J. Lond. Math. Soc., Volume 10 (1935) no. 2, pp. 126-128 | DOI | MR | Zbl

[7] Paul Erdős; András Sárközy On the number of prime factors in integers, Acta Sci. Math., Volume 42 (1980) no. 3-4, pp. 237-246 | MR | Zbl

[8] Hsien-Kuei Hwang; Tsung-Hsi Tsai Quickselect and the Dickman function, Comb. Probab. Comput., Volume 11 (2002) no. 4, pp. 353-371 | DOI | MR | Zbl

[9] Jeffrey C. Lagarias Euler’s constant: Euler’s work and modern developments, Bull. Am. Math. Soc., Volume 50 (2013) no. 4, pp. 527-628 | DOI | MR | Zbl

[10] Jared Duker Lichtman Almost primes and the Banks–Martin conjecture, J. Number Theory, Volume 211 (2020), pp. 513-529 | DOI | MR | Zbl

[11] Jared Duker Lichtman Mertens’ prime product formula, dissected, Integers, Volume 21A (2021) no. Ron Graham Memorial Volume, A17, 15 pages | MR | Zbl

[12] Jared Duker Lichtman Translated sums of primitive sets, C. R. Math. Acad. Sci. Paris, Volume 360 (2022), pp. 409-414 | DOI | Numdam | MR | Zbl

[13] Jared Duker Lichtman A proof of the Erdős primitive set conjecture, Forum Math. Pi, Volume 11 (2023), e18, 21 pages | DOI | MR | Zbl

[14] Stanislav A. Molchanov; Vladimir A. Panov The Dickman–Goncharov distribution, Russ. Math. Surv., Volume 75 (2020) no. 6, pp. 1089-1132 | DOI | Zbl

[15] Mathew D. Penrose; Andrew R. Wade Random minimal directed spanning trees and Dickman-type distributions, Adv. Appl. Probab., Volume 36 (2004) no. 3, pp. 691-714 | DOI | MR | Zbl

[16] Zhen Xiang Zhang On a problem of Erdős concerning primitive sequences, Math. Comput., Volume 60 (1993) no. 202, pp. 827-834 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique