This paper is concerned with the blow-up of solutions to the following hyperbolic-elliptic chemotaxis system:
under homogeneous Neumann boundary conditions in a bounded domain
with
Accepté le :
Publié le :
khadijeh Baghaei 1

@article{CRMATH_2023__361_G1_207_0, author = {khadijeh Baghaei}, title = {Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source}, journal = {Comptes Rendus. Math\'ematique}, pages = {207--215}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.397}, language = {en}, }
TY - JOUR AU - khadijeh Baghaei TI - Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source JO - Comptes Rendus. Mathématique PY - 2023 SP - 207 EP - 215 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.397 LA - en ID - CRMATH_2023__361_G1_207_0 ER -
khadijeh Baghaei. Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 207-215. doi : 10.5802/crmath.397. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.397/
[1] Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with logistic source, J. Math. Anal. Appl., Volume 412 (2014) no. 1, pp. 181-188 | MR | Zbl
[2] Boundedness of solutions to a quasilinear parabolic-elliptic Keller–Segel system with logistic source, Math. Methods Appl. Sci., Volume 37 (2014) no. 15, p. 2326.2330 | DOI | MR | Zbl
[3] A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 24 (1997) no. 4, pp. 633-683 | MR | Zbl
[4] A user’s guide to PDE models for chemotaxis, J. Math. Biol., Volume 58 (2009) no. 1-2, pp. 183-217 | DOI | MR | Zbl
[5] Blowup and global solutions in a chemotaxis growth system, Nonlinear Anal., Theory Methods Appl., Volume 135 (2016), pp. 57-72 | MR | Zbl
[6] Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970) no. 3, pp. 399-415 | DOI | MR | Zbl
[7] Global existence and boundedness of classical solutions in a quasilinear parabolic- elliptic chemotaxis system with logistic source, C. R. Acad. Sci. Paris, Volume 353 (2015) no. 10, pp. 913-917 | DOI | MR | Zbl
[8] Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst., Volume 20 (2015) no. 5, pp. 1499-1527 | DOI | MR | Zbl
[9] Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., Volume 40 (1997) no. 4, pp. 411-433 | MR | Zbl
[10] Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkc. Ekvacioj, Ser. Int., Volume 44 (2001) no. 3, pp. 441-469 | MR | Zbl
[11] Global existence of a chemotaxis-growth system in
[12] A chemotaxis system with logistic source, Commun. Partial Differ. Equations, Volume 32 (2007) no. 6, pp. 849-877 | DOI | MR | Zbl
[13] On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differ. Equations, Volume 256 (2014) no. 5, pp. 1847-1872 | DOI | MR | Zbl
[14] Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equations, Volume 248 (2010) no. 12, pp. 2889-2905 | DOI | MR | Zbl
[15] Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equations, Volume 35 (2010) no. 8, pp. 1516-1537 | DOI | MR | Zbl
[16] Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., Volume 384 (2011) no. 2, pp. 261-272 | DOI | MR | Zbl
[17] Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013) no. 5, pp. 748-767 | DOI | MR | Zbl
[18] How far can chemotactic cross-diffusion enforce exceeding carrying capacities, J. Nonlinear Sci., Volume 24 (2014) no. 5, pp. 809-855 | DOI | MR | Zbl
[19] Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., Theory Methods Appl., Volume 72 (2010) no. 2, pp. 1044-1064 | DOI | MR | Zbl
[20] Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 5, pp. 2299-2323 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique