Comptes Rendus
Partial differential equations
Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 207-215.

This paper is concerned with the blow-up of solutions to the following hyperbolic-elliptic chemotaxis system:

u t =-·(χuv)+g(u),xΩ,t>0,0=Δv-v+u,xΩ,t>0,

under homogeneous Neumann boundary conditions in a bounded domain Ω n ,n1, with smooth boundary and the function g is assumed to generalize the logistic source:

g(s)as-bs γ fors>0

with 1<γ2. For b<χ and some suitable conditions on parameters of problem, we prove that the solutions of this problem blow up in finite time. This result extend the obtained results for this problem.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.397

khadijeh Baghaei 1

1 School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G1_207_0,
     author = {khadijeh Baghaei},
     title = {Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {207--215},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.397},
     language = {en},
}
TY  - JOUR
AU  - khadijeh Baghaei
TI  - Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 207
EP  - 215
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.397
LA  - en
ID  - CRMATH_2023__361_G1_207_0
ER  - 
%0 Journal Article
%A khadijeh Baghaei
%T Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source
%J Comptes Rendus. Mathématique
%D 2023
%P 207-215
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.397
%G en
%F CRMATH_2023__361_G1_207_0
khadijeh Baghaei. Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 207-215. doi : 10.5802/crmath.397. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.397/

[1] Xinru Cao Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with logistic source, J. Math. Anal. Appl., Volume 412 (2014) no. 1, pp. 181-188 | MR | Zbl

[2] Xinru Cao; Sining Zheng Boundedness of solutions to a quasilinear parabolic-elliptic Keller–Segel system with logistic source, Math. Methods Appl. Sci., Volume 37 (2014) no. 15, p. 2326.2330 | DOI | MR | Zbl

[3] Miguel A. Herrero; Juan J. L. Velázquez A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 24 (1997) no. 4, pp. 633-683 | MR | Zbl

[4] Thomas Hillen; Kevin J. Painter A user’s guide to PDE models for chemotaxis, J. Math. Biol., Volume 58 (2009) no. 1-2, pp. 183-217 | DOI | MR | Zbl

[5] Kyungkeun Kanga; Angela Stevens Blowup and global solutions in a chemotaxis growth system, Nonlinear Anal., Theory Methods Appl., Volume 135 (2016), pp. 57-72 | MR | Zbl

[6] F. Keller; Lee A. Segel Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970) no. 3, pp. 399-415 | DOI | MR | Zbl

[7] Ali Khelghati; Khadijeh Baghaei Global existence and boundedness of classical solutions in a quasilinear parabolic- elliptic chemotaxis system with logistic source, C. R. Acad. Sci. Paris, Volume 353 (2015) no. 10, pp. 913-917 | DOI | MR | Zbl

[8] Johannes Lankeit Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst., Volume 20 (2015) no. 5, pp. 1499-1527 | DOI | MR | Zbl

[9] Toshitaka Nagai; Takasi Senba; Kiyoshi Yoshida Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., Volume 40 (1997) no. 4, pp. 411-433 | MR | Zbl

[10] Koichi Osaki; Atsushi Yagi Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkc. Ekvacioj, Ser. Int., Volume 44 (2001) no. 3, pp. 441-469 | MR | Zbl

[11] Koichi Osaki; Atsushi Yagi Global existence of a chemotaxis-growth system in 2 , Adv. Math. Sci. Appl., Volume 12 (2002) no. 2, pp. 587-606 | MR | Zbl

[12] J. Ignacio Tello; Michael Winkler A chemotaxis system with logistic source, Commun. Partial Differ. Equations, Volume 32 (2007) no. 6, pp. 849-877 | DOI | MR | Zbl

[13] Liangchen Wang; Chunlai Mu; Pan Zheng On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differ. Equations, Volume 256 (2014) no. 5, pp. 1847-1872 | DOI | MR | Zbl

[14] Michael Winkler Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equations, Volume 248 (2010) no. 12, pp. 2889-2905 | DOI | MR | Zbl

[15] Michael Winkler Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equations, Volume 35 (2010) no. 8, pp. 1516-1537 | DOI | MR | Zbl

[16] Michael Winkler Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., Volume 384 (2011) no. 2, pp. 261-272 | DOI | MR | Zbl

[17] Michael Winkler Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013) no. 5, pp. 748-767 | DOI | MR | Zbl

[18] Michael Winkler How far can chemotactic cross-diffusion enforce exceeding carrying capacities, J. Nonlinear Sci., Volume 24 (2014) no. 5, pp. 809-855 | DOI | MR | Zbl

[19] Michael Winkler; Kianhwa C. Djie Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., Theory Methods Appl., Volume 72 (2010) no. 2, pp. 1044-1064 | DOI | MR | Zbl

[20] Pan Zheng; Chunlai Mu; Xuehang Hu Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 5, pp. 2299-2323 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy