Comptes Rendus
Algebraic geometry
Connected algebraic subgroups of groups of birational transformations not contained in a maximal one
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 313-322.

We prove that for each n2, there exist a ruled variety X of dimension n and a connected algebraic subgroup of Bir(X) which is not contained in a maximal one.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.406

Pascal Fong 1; Sokratis Zikas 1

1 Universität Basel, Departement Mathematik und Informatik, Spiegelgasse 1, CH–4051 Basel, Switzerland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G1_313_0,
     author = {Pascal Fong and Sokratis Zikas},
     title = {Connected algebraic subgroups of groups of birational transformations not contained in a maximal one},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {313--322},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.406},
     language = {en},
}
TY  - JOUR
AU  - Pascal Fong
AU  - Sokratis Zikas
TI  - Connected algebraic subgroups of groups of birational transformations not contained in a maximal one
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 313
EP  - 322
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.406
LA  - en
ID  - CRMATH_2023__361_G1_313_0
ER  - 
%0 Journal Article
%A Pascal Fong
%A Sokratis Zikas
%T Connected algebraic subgroups of groups of birational transformations not contained in a maximal one
%J Comptes Rendus. Mathématique
%D 2023
%P 313-322
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.406
%G en
%F CRMATH_2023__361_G1_313_0
Pascal Fong; Sokratis Zikas. Connected algebraic subgroups of groups of birational transformations not contained in a maximal one. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 313-322. doi : 10.5802/crmath.406. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.406/

[1] Jérémy Blanc Sous-groupes algébriques du groupe de Cremona, Transform. Groups, Volume 14 (2009) no. 2, pp. 249-285 | DOI | MR | Zbl

[2] Jérémy Blanc; Andrea Fanelli; Ronan Terpereau Automorphisms of 1 -bundles over rational surfaces (2021) | arXiv

[3] Jérémy Blanc; Andrea Fanelli; Ronan Terpereau Connected Algebraic Groups Acting on three-dimensional Mori Fibrations, Int. Math. Res. Not. (2021), rnab293 | DOI

[4] Jérémy Blanc; Stéphane Lamy; Susanna Zimmermann Quotients of higher-dimensional Cremona groups, Acta Math., Volume 226 (2021) no. 2, pp. 211-318 | DOI | MR | Zbl

[5] Michel Brion Algebraic group actions on normal varieties, Trans. Mosc. Math. Soc., Volume 78 (2017), pp. 85-107 | DOI | MR | Zbl

[6] Michel Brion; Preena Samuel; Vikraman Uma Lectures on the structure of algebraic groups and geometric applications, CMI Lecture Series in Mathematics, 1, Hindustan Book Agency; Chennai Mathematical Institute, 2013, viii+120 pages | DOI | MR

[7] Igor V. Dolgachev; Vasily A. Iskovskikh Finite subgroups of the plane Cremona group, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progress in Mathematics), Volume 269, Birkhäuser, 2009, pp. 443-548 | DOI | MR | Zbl

[8] Federigo Enriques Sui gruppi continui di trasformazioni cremoniane nel piano, Rom. Acc. L. Rend. (5), Volume 2 (1893) no. 1, pp. 468-473 | Zbl

[9] Enrica Floris A note on the G-Sarkisov program, Enseign. Math., Volume 66 (2020) no. 1-2, pp. 83-92 | DOI | MR | Zbl

[10] Pascal Fong Algebraic subgroups of the group of birational transformations of ruled surfaces, 2021 | arXiv

[11] Pascal Fong Connected algebraic groups acting on algebraic surfaces, 2021 | arXiv

[12] Christopher D. Hacon; James McKernan On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007) no. 1, pp. 119-136 | DOI | MR | Zbl

[13] Christopher D. Hacon; James McKernan The Sarkisov program, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 389-405 | DOI | MR | Zbl

[14] Robin Hartshorne Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR

[15] János Kollár Lectures on resolution of singularities, Annals of Mathematics Studies, 166, Princeton University Press, 2007, vi+208 pages | MR

[16] János Kollár; Shigefumi Mori Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR

[17] Hanspeter Kraft Regularization of Rational Group Actions (2018) | arXiv

[18] Joseph Lipman Desingularization of two-dimensional schemes, Ann. Math., Volume 107 (1978) no. 1, pp. 151-207 | DOI | MR | Zbl

[19] Masaki Maruyama On classification of ruled surfaces, Lectures in Mathematics, Department of Mathematics, Kyoto University, 3, Kinokuniya Book-Store Co., 1970, iv+75 pages | MR

[20] Masaki Maruyama On automorphism groups of ruled surfaces, J. Math. Kyoto Univ., Volume 11 (1971), pp. 89-112 | DOI | MR | Zbl

[21] Hiroshi Umemura Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables, Nagoya Math. J., Volume 79 (1980), pp. 47-67 | DOI | MR | Zbl

[22] Hiroshi Umemura Maximal algebraic subgroups of the Cremona group of three variables. Imprimitive algebraic subgroups of exceptional type, Nagoya Math. J., Volume 87 (1982), pp. 59-78 | DOI | MR | Zbl

[23] Hiroshi Umemura On the maximal connected algebraic subgroups of the Cremona group. I, Nagoya Math. J., Volume 88 (1982), pp. 213-246 | DOI | MR | Zbl

[24] Hiroshi Umemura On the maximal connected algebraic subgroups of the Cremona group. II, Algebraic groups and related topics (Kyoto/Nagoya, 1983) (Advanced Studies in Pure Mathematics), Volume 6, North-Holland, 1985, pp. 349-436 | DOI | MR | Zbl

[25] André Weil On algebraic groups of transformations, Am. J. Math., Volume 77 (1955), pp. 355-391 | DOI | MR | Zbl

[26] Dmitri Zaitsev Regularization of birational group operations in the sense of Weil, J. Lie Theory, Volume 5 (1995) no. 2, pp. 207-224 | MR | Zbl

Cited by Sources:

Comments - Policy