Comptes Rendus
Combinatorics
Prefixes of the Fibonacci word that end with a cube
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 323-330.

The Fibonacci word f=010010100100101 is one of the most well-studied words in the area of combinatorics on words. It is not periodic, but nevertheless contains many highly periodic factors (contiguous subwords). For example, it contains many cubes (i.e., non-empty words of the form xxx). We study the prefixes of the Fibonacci word that end with a cube. Using the computer prover Walnut, we obtain an exact description of the positions of the Fibonacci word at which a cube ends. This gives a certain measure of how close the Fibonacci word is to being periodic.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.408
Classification: 68R15

Narad Rampersad 1

1 Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Ave., Winnipeg, MB, R3B 2E9, Canada
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G1_323_0,
     author = {Narad Rampersad},
     title = {Prefixes of the {Fibonacci} word that end with a cube},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {323--330},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.408},
     language = {en},
}
TY  - JOUR
AU  - Narad Rampersad
TI  - Prefixes of the Fibonacci word that end with a cube
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 323
EP  - 330
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.408
LA  - en
ID  - CRMATH_2023__361_G1_323_0
ER  - 
%0 Journal Article
%A Narad Rampersad
%T Prefixes of the Fibonacci word that end with a cube
%J Comptes Rendus. Mathématique
%D 2023
%P 323-330
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.408
%G en
%F CRMATH_2023__361_G1_323_0
Narad Rampersad. Prefixes of the Fibonacci word that end with a cube. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 323-330. doi : 10.5802/crmath.408. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.408/

[1] Jean-Paul Allouche; Jeffrey Shallit Automatic Sequences: Theory, Applications Generalizations, Cambridge University Press, 2003 | DOI | Zbl

[2] Paweł Gawrychowski; Dalia Krieger; Narad Rampersad; Jeffrey Shallit Finding the growth rate of a regular or context-free language in polynomial time, Developments in Language, Theory. 12th International Conference, DLT 2008, Kyoto, Japan, September 16–19, 2008. Proceedings (Lecture Notes in Computer Science), Volume 5257, Springer, 2008, pp. 339-358 | MR | Zbl

[3] John E. Hopcroft; Jeffrey D. Ullman Introduction to Automata Theory, Languages and Computation, Addison-Wesley Series in Computer Science, Addison-Wesley Publishing Group, 1979 | Zbl

[4] Dalia Krieger Critical Exponents and Stabilizers of Infinite Words, Ph. D. Thesis, University of Waterloo, Waterloo, Ontario, Canada (2008) (http://uwspace.uwaterloo.ca/handle/10012/3599) | MR

[5] Cornelis G. Lekkerkerker Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci [Representation of natural numbers as a sum of Fibonacci numbers], Simon Stevin, Volume 29 (1952), pp. 190-195 | Zbl

[6] Filippo Mignosi; Giuseppe Pirillo Repetitions in the Fibonacci infinite word, RAIRO, Inform. Théor. Appl., Volume 26 (1992), pp. 199-204 | DOI | Numdam | MR | Zbl

[7] Filippo Mignosi; Antonio Restivo; Sergio Salemi Periodicity and the golden ratio, Theor. Comput. Sci., Volume 204 (1998), pp. 153-167 | DOI | MR | Zbl

[8] Marston Morse; Gustav A. Hedlund Symbolic dynamics, Am. J. Math., Volume 60 (1938), pp. 815-866 | DOI | MR | Zbl

[9] Hamoon Mousavi Automatic theorem proving in Walnut (2021) Documentation (2016–2021) available at https://arxiv.org/abs/1603.06017

[10] Hamoon Mousavi; Luke Schaeffer; Jeffrey Shallit Decision algorithms for Fibonacci-automatic words I: Basic results, RAIRO, Theor. Inform. Appl., Volume 50 (2016) no. 1, pp. 39-66 | DOI | Numdam | MR | Zbl

[11] Alexander Ostrowski Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Semin. Univ. Hamb., Volume 1 (1922), p. 77-98, 250–251 (reprinted in Collected Mathematical Papers, Vol. 3, pp. 57–80) | DOI | MR | Zbl

[12] Édouard Zeckendorf Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Liège, Volume 41 (1972), pp. 179-182 | Zbl

Cited by Sources:

Comments - Policy