The Fibonacci word is one of the most well-studied words in the area of combinatorics on words. It is not periodic, but nevertheless contains many highly periodic factors (contiguous subwords). For example, it contains many cubes (i.e., non-empty words of the form ). We study the prefixes of the Fibonacci word that end with a cube. Using the computer prover Walnut, we obtain an exact description of the positions of the Fibonacci word at which a cube ends. This gives a certain measure of how close the Fibonacci word is to being periodic.
Revised:
Accepted:
Published online:
Narad Rampersad 1
@article{CRMATH_2023__361_G1_323_0, author = {Narad Rampersad}, title = {Prefixes of the {Fibonacci} word that end with a cube}, journal = {Comptes Rendus. Math\'ematique}, pages = {323--330}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.408}, language = {en}, }
Narad Rampersad. Prefixes of the Fibonacci word that end with a cube. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 323-330. doi : 10.5802/crmath.408. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.408/
[1] Automatic Sequences: Theory, Applications Generalizations, Cambridge University Press, 2003 | DOI | Zbl
[2] Finding the growth rate of a regular or context-free language in polynomial time, Developments in Language, Theory. 12th International Conference, DLT 2008, Kyoto, Japan, September 16–19, 2008. Proceedings (Lecture Notes in Computer Science), Volume 5257, Springer, 2008, pp. 339-358 | MR | Zbl
[3] Introduction to Automata Theory, Languages and Computation, Addison-Wesley Series in Computer Science, Addison-Wesley Publishing Group, 1979 | Zbl
[4] Critical Exponents and Stabilizers of Infinite Words, Ph. D. Thesis, University of Waterloo, Waterloo, Ontario, Canada (2008) (http://uwspace.uwaterloo.ca/handle/10012/3599) | MR
[5] Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci [Representation of natural numbers as a sum of Fibonacci numbers], Simon Stevin, Volume 29 (1952), pp. 190-195 | Zbl
[6] Repetitions in the Fibonacci infinite word, RAIRO, Inform. Théor. Appl., Volume 26 (1992), pp. 199-204 | DOI | Numdam | MR | Zbl
[7] Periodicity and the golden ratio, Theor. Comput. Sci., Volume 204 (1998), pp. 153-167 | DOI | MR | Zbl
[8] Symbolic dynamics, Am. J. Math., Volume 60 (1938), pp. 815-866 | DOI | MR | Zbl
[9] Automatic theorem proving in Walnut (2021) Documentation (2016–2021) available at https://arxiv.org/abs/1603.06017
[10] Decision algorithms for Fibonacci-automatic words I: Basic results, RAIRO, Theor. Inform. Appl., Volume 50 (2016) no. 1, pp. 39-66 | DOI | Numdam | MR | Zbl
[11] Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Semin. Univ. Hamb., Volume 1 (1922), p. 77-98, 250–251 (reprinted in Collected Mathematical Papers, Vol. 3, pp. 57–80) | DOI | MR | Zbl
[12] Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Liège, Volume 41 (1972), pp. 179-182 | Zbl
Cited by Sources:
Comments - Policy