[Un théorème de décomposition pour les variétés
Let
Soit X une variété
Accepté le :
Publié le :
Keywords:
Mots-clés : Variétés
Stéphane Druel 1 ; Henri Guenancia 2 ; Mihai Păun 3

@article{CRMATH_2024__362_S1_93_0, author = {St\'ephane Druel and Henri Guenancia and Mihai P\u{a}un}, title = {A decomposition theorem for $\mathbb{Q}${-Fano} {K\"ahler{\textendash}Einstein} varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {93--118}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, number = {S1}, year = {2024}, doi = {10.5802/crmath.612}, language = {en}, }
TY - JOUR AU - Stéphane Druel AU - Henri Guenancia AU - Mihai Păun TI - A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties JO - Comptes Rendus. Mathématique PY - 2024 SP - 93 EP - 118 VL - 362 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmath.612 LA - en ID - CRMATH_2024__362_S1_93_0 ER -
Stéphane Druel; Henri Guenancia; Mihai Păun. A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties. Comptes Rendus. Mathématique, Complex algebraic geometry, in memory of Jean-Pierre Demailly, Volume 362 (2024) no. S1, pp. 93-118. doi : 10.5802/crmath.612. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.612/
[1] Cohomological characterizations of projective spaces and hyperquadrics, Invent. Math., Volume 174 (2008) no. 2, pp. 233-253 | DOI | MR | Zbl
[2] Kähler-Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. Reine Angew. Math., Volume 751 (2019), pp. 27-89 | DOI | MR | Zbl
[3] A variational approach to the Yau–Tian–Donaldson conjecture, J. Am. Math. Soc., Volume 34 (2021) no. 3, pp. 605-652 | DOI | MR | Zbl
[4] Kähler–Einstein metrics on stable varieties and log canonical pairs, Geom. Funct. Anal., Volume 24 (2014) no. 6, pp. 1683-1730 | DOI | Zbl
[5] Rational curves on foliated varieties, Foliation theory in algebraic geometry (Simons Symposia), Springer, 2016, pp. 21-51 | DOI | Zbl
[6] The local fundamental group of a Kawamata log terminal singularity is finite, Invent. Math., Volume 226 (2021) no. 3, pp. 845-896 | DOI | MR | Zbl
[7] Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 183-197 | DOI | MR | Zbl
[8] Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than
[9] Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches
[10] Foliations with positive slopes and birational stability of orbifold cotangent bundles, Publ. Math., Inst. Hautes Étud. Sci., Volume 129 (2019), pp. 1-49 | DOI | MR | Zbl
[11] Complex Analytic and Differential Geometry (2012) (OpenContent Book, freely available from the author’s web site http://www-fourier.ujf-grenoble.fr/~demailly/books.html)
[12] Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl
[13] Complex Monge–Ampère equations on quasi-projective varieties, J. Reine Angew. Math., Volume 727 (2017), pp. 145-167 | DOI | MR | Zbl
[14] On foliations with nef anti-canonical bundle, Trans. Am. Math. Soc., Volume 369 (2017) no. 11, pp. 7765-7787 | DOI | MR | Zbl
[15] A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Invent. Math., Volume 211 (2018) no. 1, pp. 245-296 | DOI | MR | Zbl
[16] Codimension one foliations with numerically trivial canonical class on singular spaces, Duke Math. J., Volume 170 (2021) no. 1, pp. 95-203 | MR | Zbl
[17] Singular Kähler–Einstein metrics, J. Am. Math. Soc., Volume 22 (2009), pp. 607-639 | DOI | Zbl
[18] Stability and negativity for tangent sheaves of minimal Kähler spaces, Geometry and analysis on manifolds (Katata/Kyoto, 1987) (Lecture Notes in Mathematics), Volume 1339, Springer, 1988, pp. 118-126 | DOI | MR | Zbl
[19] Restrictions of semistable bundles on projective varieties, Volume 59 (1984) no. 4, pp. 635-650 | DOI | MR | Zbl
[20] Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups, Geom. Topol., Volume 23 (2019), pp. 2051-2124 | DOI | MR | Zbl
[21] Differential forms on log canonical spaces, Publ. Math., Inst. Hautes Étud. Sci. (2011) no. 114, pp. 87-169 | DOI | Numdam | MR | Zbl
[22] Movable curves and semistable sheaves, Int. Math. Res. Not. (2016) no. 2, pp. 536-570 | DOI | MR | Zbl
[23] Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor, J. Algebr. Geom., Volume 31 (2022) no. 3, pp. 467-496 | DOI | MR | Zbl
[24] Semistability of the tangent sheaf of singular varieties, Algebr. Geom., Volume 3 (2016) no. 5, pp. 508-542 | DOI | MR | Zbl
[25] Stability of solutions to complex Monge–Ampère equations in big cohomology classes, Math. Res. Lett., Volume 19 (2012) no. 5, pp. 1025-1042 | DOI | MR | Zbl
[26] Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math., Volume 216 (2019) no. 2, pp. 395-419 | DOI | MR | Zbl
[27] Infinitesimale Transformationsgruppen komplexer Räume, Math. Ann., Volume 160 (1965), pp. 72-92 | DOI | MR | Zbl
[28] Pull-back morphisms for reflexive differential forms, Adv. Math., Volume 245 (2013), pp. 78-112 | DOI | MR | Zbl
[29] Quotients of Calabi–Yau varieties, Algebra, Arithmetic, and Geometry: in honor of Yu. I. Manin. Vol. II (Progress in Mathematics), Volume 270, Birkhäuser, 2009, pp. 179-211 | DOI | MR | Zbl
[30] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (with the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR
[31] Differential geometry of complex vector bundles., Princeton University Press; Iwanami Shoten Publishers, 1987 | DOI
[32] Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, 2013, x+370 pages (with a collaboration of Sándor Kovács) | DOI
[33] Singularities of pairs, Algebraic Geometry (Santa Cruz, 1995) (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 221-287 | DOI | MR | Zbl
[34] Yau-Tian–Donaldson correspondence for K-semistable Fano manifolds, J. Reine Angew. Math., Volume 733 (2017), pp. 55-85 | DOI | MR | Zbl
[35] On the stability of extensions of tangent sheaves on Kähler–Einstein Fano/Calabi–Yau pairs, Math. Ann., Volume 381 (2021) no. 3-4, pp. 1943-1977 | DOI | MR | Zbl
[36] The uniform version of Yau–Tian–Donaldson conjecture for singular Fano varieties, Peking Math. J., Volume 5 (2022) no. 2, pp. 383-426 | DOI | MR | Zbl
[37] K-stability and Kähler–Einstein metrics, Commun. Pure Appl. Math., Volume 68 (2015) no. 7, pp. 1085-1156 | DOI | MR
[38] On stability of the tangent bundles of Fano varieties, Int. J. Math., Volume 3 (1992) no. 3, pp. 401-413 | DOI | MR | Zbl
[39] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I., Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl
Cité par Sources :
Commentaires - Politique