[Un théorème de décomposition pour les variétés -Fano qui admettent une métrique de Kähler–Einstein]
Soit X une variété -Fano admettant une métrique de Kähler–Einstein. Nous montrons, qu’à un revêtement fini quasi-étale près, X est un produit de variétés -Fano admettant une métrique de Kähler–Einstein dont le fibré tangent est stable relativement au diviseur anticanonique. La démonstration repose notamment sur un théorème de décompostion pour les feuilletages algébriquement intégrables. Nous montrons également que l’extension canonique de par est polystable à nouveau relativement au diviseur anticanonique.
Let be a -Fano variety admitting a Kähler–Einstein metric. We prove that up to a finite quasi-étale cover, splits isometrically as a product of Kähler–Einstein -Fano varieties whose tangent sheaf is stable with respect to the anticanonical polarization. This relies among other things on a very general splitting theorem for algebraically integrable foliations. We also prove that the canonical extension of by is polystable with respect to the anticanonical polarization.
Accepté le :
Publié le :
Keywords: $\mathbb{Q}$-Fano varieties, singular Kähler–Einstein metrics, stable reflexive sheaves, algebraically integrable foliations
Mot clés : Variétés $\mathbb{Q}$-Fano, métriques de Kähler–Einstein singulières, faisceaux réflexifs stables, feuilletages algébriquement intégrables
Stéphane Druel 1 ; Henri Guenancia 2 ; Mihai Păun 3
@article{CRMATH_2024__362_S1_93_0, author = {St\'ephane Druel and Henri Guenancia and Mihai P\u{a}un}, title = {A decomposition theorem for $\mathbb{Q}${-Fano} {K\"ahler{\textendash}Einstein} varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {93--118}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, number = {S1}, year = {2024}, doi = {10.5802/crmath.612}, language = {en}, }
TY - JOUR AU - Stéphane Druel AU - Henri Guenancia AU - Mihai Păun TI - A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties JO - Comptes Rendus. Mathématique PY - 2024 SP - 93 EP - 118 VL - 362 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmath.612 LA - en ID - CRMATH_2024__362_S1_93_0 ER -
Stéphane Druel; Henri Guenancia; Mihai Păun. A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties. Comptes Rendus. Mathématique, Volume 362 (2024) no. S1, pp. 93-118. doi : 10.5802/crmath.612. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.612/
[1] Cohomological characterizations of projective spaces and hyperquadrics, Invent. Math., Volume 174 (2008) no. 2, pp. 233-253 | DOI | MR | Zbl
[2] Kähler-Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. Reine Angew. Math., Volume 751 (2019), pp. 27-89 | DOI | MR | Zbl
[3] A variational approach to the Yau–Tian–Donaldson conjecture, J. Am. Math. Soc., Volume 34 (2021) no. 3, pp. 605-652 | DOI | MR | Zbl
[4] Kähler–Einstein metrics on stable varieties and log canonical pairs, Geom. Funct. Anal., Volume 24 (2014) no. 6, pp. 1683-1730 | DOI | Zbl
[5] Rational curves on foliated varieties, Foliation theory in algebraic geometry (Simons Symposia), Springer, 2016, pp. 21-51 | DOI | Zbl
[6] The local fundamental group of a Kawamata log terminal singularity is finite, Invent. Math., Volume 226 (2021) no. 3, pp. 845-896 | DOI | MR | Zbl
[7] Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 183-197 | DOI | MR | Zbl
[8] Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than , J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 199-234 | DOI | MR | Zbl
[9] Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches and completion of the main proof, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 235-278 | DOI | MR | Zbl
[10] Foliations with positive slopes and birational stability of orbifold cotangent bundles, Publ. Math., Inst. Hautes Étud. Sci., Volume 129 (2019), pp. 1-49 | DOI | MR | Zbl
[11] Complex Analytic and Differential Geometry (2012) (OpenContent Book, freely available from the author’s web site http://www-fourier.ujf-grenoble.fr/~demailly/books.html)
[12] Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl
[13] Complex Monge–Ampère equations on quasi-projective varieties, J. Reine Angew. Math., Volume 727 (2017), pp. 145-167 | DOI | MR | Zbl
[14] On foliations with nef anti-canonical bundle, Trans. Am. Math. Soc., Volume 369 (2017) no. 11, pp. 7765-7787 | DOI | MR | Zbl
[15] A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Invent. Math., Volume 211 (2018) no. 1, pp. 245-296 | DOI | MR | Zbl
[16] Codimension one foliations with numerically trivial canonical class on singular spaces, Duke Math. J., Volume 170 (2021) no. 1, pp. 95-203 | MR | Zbl
[17] Singular Kähler–Einstein metrics, J. Am. Math. Soc., Volume 22 (2009), pp. 607-639 | DOI | Zbl
[18] Stability and negativity for tangent sheaves of minimal Kähler spaces, Geometry and analysis on manifolds (Katata/Kyoto, 1987) (Lecture Notes in Mathematics), Volume 1339, Springer, 1988, pp. 118-126 | DOI | MR | Zbl
[19] Restrictions of semistable bundles on projective varieties, Volume 59 (1984) no. 4, pp. 635-650 | DOI | MR | Zbl
[20] Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups, Geom. Topol., Volume 23 (2019), pp. 2051-2124 | DOI | MR | Zbl
[21] Differential forms on log canonical spaces, Publ. Math., Inst. Hautes Étud. Sci. (2011) no. 114, pp. 87-169 | DOI | Numdam | MR | Zbl
[22] Movable curves and semistable sheaves, Int. Math. Res. Not. (2016) no. 2, pp. 536-570 | DOI | MR | Zbl
[23] Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor, J. Algebr. Geom., Volume 31 (2022) no. 3, pp. 467-496 | DOI | MR | Zbl
[24] Semistability of the tangent sheaf of singular varieties, Algebr. Geom., Volume 3 (2016) no. 5, pp. 508-542 | DOI | MR | Zbl
[25] Stability of solutions to complex Monge–Ampère equations in big cohomology classes, Math. Res. Lett., Volume 19 (2012) no. 5, pp. 1025-1042 | DOI | MR | Zbl
[26] Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math., Volume 216 (2019) no. 2, pp. 395-419 | DOI | MR | Zbl
[27] Infinitesimale Transformationsgruppen komplexer Räume, Math. Ann., Volume 160 (1965), pp. 72-92 | DOI | MR | Zbl
[28] Pull-back morphisms for reflexive differential forms, Adv. Math., Volume 245 (2013), pp. 78-112 | DOI | MR | Zbl
[29] Quotients of Calabi–Yau varieties, Algebra, Arithmetic, and Geometry: in honor of Yu. I. Manin. Vol. II (Progress in Mathematics), Volume 270, Birkhäuser, 2009, pp. 179-211 | DOI | MR | Zbl
[30] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (with the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR
[31] Differential geometry of complex vector bundles., Princeton University Press; Iwanami Shoten Publishers, 1987 | DOI
[32] Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, 2013, x+370 pages (with a collaboration of Sándor Kovács) | DOI
[33] Singularities of pairs, Algebraic Geometry (Santa Cruz, 1995) (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 221-287 | DOI | MR | Zbl
[34] Yau-Tian–Donaldson correspondence for K-semistable Fano manifolds, J. Reine Angew. Math., Volume 733 (2017), pp. 55-85 | DOI | MR | Zbl
[35] On the stability of extensions of tangent sheaves on Kähler–Einstein Fano/Calabi–Yau pairs, Math. Ann., Volume 381 (2021) no. 3-4, pp. 1943-1977 | DOI | MR | Zbl
[36] The uniform version of Yau–Tian–Donaldson conjecture for singular Fano varieties, Peking Math. J., Volume 5 (2022) no. 2, pp. 383-426 | DOI | MR | Zbl
[37] K-stability and Kähler–Einstein metrics, Commun. Pure Appl. Math., Volume 68 (2015) no. 7, pp. 1085-1156 | DOI | MR
[38] On stability of the tangent bundles of Fano varieties, Int. J. Math., Volume 3 (1992) no. 3, pp. 401-413 | DOI | MR | Zbl
[39] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I., Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl
Cité par Sources :
Commentaires - Politique