We propose a simple method to obtain semigroup representation of solutions to the heat equation using a local condition with prescribed growth and a boundedness condition within tempered distributions. This applies to many functional settings and, as an example, we consider the Koch and Tataru space related to initial data.
Nous proposons une méthode simple pour obtenir une représentation par semi-groupe des solutions de l’équation de la chaleur utilisant une condition à poids et un contrôle dans des distributions tempérées. Cette méthode s’applique à de nombreux espaces fonctionnels. À titre d’exemple, nous considérons l’application aux solutions dans l’espace de Koch et Tataru lié aux données initiales dans .
Revised:
Accepted:
Published online:
Pascal Auscher 1; Hedong Hou 1

@article{CRMATH_2024__362_G7_761_0, author = {Pascal Auscher and Hedong Hou}, title = {On representation of solutions to the heat equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {761--768}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.593}, language = {en}, }
Pascal Auscher; Hedong Hou. On representation of solutions to the heat equation. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 761-768. doi : 10.5802/crmath.593. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.593/
[1] On well-posedness and maximal regularity for parabolic Cauchy problems on weighted tent spaces (2023) (arXiv:2311.04844)
[2] On well-posedness for parabolic Cauchy problems of Lions type with rough initial data (2024) (arXiv:2406.15775)
[3] On existence and uniqueness for non-autonomous parabolic Cauchy problems with rough coefficients, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 19 (2019) no. 2, pp. 387-471 | DOI | MR | Zbl
[4] Non-negative solutions of linear parabolic equations, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., Volume 22 (1968) no. 4, pp. 607-694 | Numdam | MR | Zbl
[5] Elements of mathematics. Topological Vector Spaces. Chapters 1–5, Springer, 2003 | DOI | MR | Zbl
[6] An example of nonuniqueness of the Cauchy problem for the heat equation, Commun. Partial Differ. Equations, Volume 19 (1994) no. 7-8, pp. 1257-1261 | DOI | MR | Zbl
[7] On the uniform stabilization of solutions of the second mixed problem for a parabolic equation, Math. USSR, Sb., Volume 47 (1984) no. 2, pp. 439-498 | DOI | Zbl
[8] The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, Classics in Mathematics, Springer, 2003 | DOI | MR | Zbl
[9] Sur les solutions non négatives de l’équation linéaire normale parabolique, Rev. Roum. Math. Pures Appl., Volume 9 (1964), pp. 393-408 | MR | Zbl
[10] Well-posedness for the Navier-–Stokes Equations, Adv. Math., Volume 157 (2001) no. 1, pp. 22-35 | DOI | MR | Zbl
[11] Partial Differential Equations I: Basic Theory, Applied Mathematical Sciences, 115, Springer New York, NY, 2011 | DOI | MR | Zbl
[12] Theory of Function Spaces, Modern Birkhäuser Classics, Birkhäuser, 1983 | DOI | MR | Zbl
[13] Théorèmes d’unicité pour l’équation de la chaleur, Rec. Math. Moscou, Volume 42 (1935) no. 2, pp. 199-216 | Zbl
[14] Sur les classes quasianalytiques des solutions des équations aux dérivées partielles du type parabolique, Nova Acta Soc. Sci. Upsal., IV. Ser., Volume 10 (1936), pp. 1-57 | Zbl
[15] Positive temperatures on an infinite rod, Trans. Am. Math. Soc., Volume 55 (1944), pp. 85-95 | DOI | MR | Zbl
[16] Tent space well-posedness for parabolic Cauchy problems with rough coefficients, J. Differ. Equations, Volume 269 (2020) no. 12, pp. 11086-11164 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy