[Nouveaux résultats sur l’élimination de l’écart de dualité de la reformulation du cône du second ordre pour le sous-problème de la région de confiance étendue avec deux coupes intersectées]
Dans cet article, nous considérons le sous-problème non convexe de la région de confiance étendue avec deux contraintes d’inégalité linéaires qui se croisent,
In this paper, we consider the nonconvex extended trust-region subproblem with two intersecting linear inequality constraints,
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.661
Keywords: Second-order-cone reformulation, extended trust-region subproblem, linear inequality constraints, duality gap, semidefinite programming relaxation
Mots-clés : Reformulation de cône de second ordre, sous-problèmes de domaine de confiance étendu, contraintes d’inégalité linéaire, écart de dualité, relaxation de planification semi-définie
Meiling Wang 1

@article{CRMATH_2024__362_G11_1497_0, author = {Meiling Wang}, title = {New results on eliminating the duality gap of the second-order-cone reformulation for extended trust-region subproblem with two intersecting cuts}, journal = {Comptes Rendus. Math\'ematique}, pages = {1497--1513}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.661}, zbl = {07945492}, language = {en}, }
TY - JOUR AU - Meiling Wang TI - New results on eliminating the duality gap of the second-order-cone reformulation for extended trust-region subproblem with two intersecting cuts JO - Comptes Rendus. Mathématique PY - 2024 SP - 1497 EP - 1513 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.661 LA - en ID - CRMATH_2024__362_G11_1497_0 ER -
%0 Journal Article %A Meiling Wang %T New results on eliminating the duality gap of the second-order-cone reformulation for extended trust-region subproblem with two intersecting cuts %J Comptes Rendus. Mathématique %D 2024 %P 1497-1513 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.661 %G en %F CRMATH_2024__362_G11_1497_0
Meiling Wang. New results on eliminating the duality gap of the second-order-cone reformulation for extended trust-region subproblem with two intersecting cuts. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1497-1513. doi : 10.5802/crmath.661. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.661/
[1] Strong duality for the CDT subproblem: a necessary and sufficient condition, SIAM J. Optim., Volume 19 (2008) no. 4, pp. 1735-1756 | DOI | MR | Zbl
[2] Second-order-cone constraints for extended trust-region subproblems, SIAM J. Optim., Volume 23 (2013) no. 1, pp. 432-451 | DOI | MR | Zbl
[3] A branch and bound algorithm for nonconvex quadratic optimization with ball and linear constraints, J. Glob. Optim., Volume 69 (2017) no. 2, pp. 309-342 | DOI | MR | Zbl
[4] The trust region subproblem with non-intersecting linear constraints, Math. Program., Volume 149 (2015) no. 1-2, Ser. A, pp. 253-264 | DOI | MR | Zbl
[5] On globally solving the extended trust-region subproblems, Oper. Res. Lett., Volume 48 (2020) no. 4, pp. 441-445 | DOI | MR | Zbl
[6] Recovering optimal solutions via SOC-SDP relaxation of trust region subproblem with nonintersecting linear constraints, J. Ind. Manag. Optim., Volume 15 (2019) no. 4, pp. 1677-1699 | DOI | MR | Zbl
[7] Globally solving extended trust region subproblems with two intersecting cuts, Optim. Lett., Volume 14 (2020) no. 7, pp. 1855-1867 | DOI | MR | Zbl
[8] On the global optimality of generalized trust region subproblems, Optimization, Volume 59 (2010) no. 8, pp. 1139-1151 | DOI | MR | Zbl
[9] Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization, Math. Program., Volume 147 (2014) no. 1-2, Ser. A, pp. 171-206 | DOI | MR | Zbl
[10] An efficient algorithm for large-scale extended trust-region subproblems with non-intersecting linear constraints, Optim. Lett., Volume 15 (2021) no. 4, pp. 1425-1446 | DOI | MR
[11] An efficient algorithm for the extended trust-region subproblem with two linear constraints, Bull. Iranian Math. Soc., Volume 48 (2022) no. 2, pp. 715-737 | DOI | MR | Zbl
[12] On the branch and bound algorithm for the extended trust-region subproblem, J. Glob. Optim., Volume 83 (2022) no. 2, pp. 221-233 | DOI | MR | Zbl
[13] Exactness conditions for an SDP relaxation of the extended trust region problem, Optim. Lett., Volume 10 (2016) no. 6, pp. 1141-1151 | DOI | MR | Zbl
[14] On cones of nonnegative quadratic functions, Math. Oper. Res., Volume 28 (2003) no. 2, pp. 246-267 | DOI | MR | Zbl
[15] Nonlinear programming: trust region algorithms, Proceedings of Chinese SIAM Annual Meeting (S. T. Xiao; F. Wu, eds.), Hsinghua University Press (1994), pp. 83-97
[16] Trust region algorithms for constrained optimization, Proceedings of Conference on Scientific and Engineering Computing for Young Chinese Scientists (J. Z. Cui; Z. C. Shi; D. L Wang, eds.), National Defence Industry Press (1994), pp. 105-110
[17] A necessary and sufficient condition of convexity for SOC reformulation of trust-region subproblem with two intersecting cuts, Sci. China, Math., Volume 59 (2016) no. 6, pp. 1127-1140 | DOI | MR | Zbl
[18] New results on narrowing the duality gap of the extended Celis-Dennis-Tapia problem, SIAM J. Optim., Volume 27 (2017) no. 2, pp. 890-909 | DOI | MR | Zbl
[19] New results on quadratic minimization, SIAM J. Optim., Volume 14 (2003) no. 1, pp. 245-267 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique