[Le problème isospectral pour les
We pose the isospectral problem for the
Nous posons le problème isospectral pour les
Révisé le :
Accepté le :
Publié le :
Keywords: Min-max,
Mots-clés : Min-max,
Jared Marx-Kuo 1

@article{CRMATH_2025__363_G6_565_0, author = {Jared Marx-Kuo}, title = {The isospectral problem for $p$-widths: an application of {Zoll} metrics}, journal = {Comptes Rendus. Math\'ematique}, pages = {565--570}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.708}, language = {en}, }
Jared Marx-Kuo. The isospectral problem for $p$-widths: an application of Zoll metrics. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 565-570. doi : 10.5802/crmath.708. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.708/
[1] The width of ellipsoids (2016) | arXiv
[2] The homotopy groups of the integral cycle groups, Topology, Volume 1 (1962) no. 4, pp. 257-299 | DOI | MR | Zbl
[3] The theory of varifolds (1965) https://albert.ias.edu/... (Mimeographed notes)
[4] Riemannian metrics on the sphere with Zoll families of minimal hypersurfaces (2021) | arXiv
[5] Rigidity theorems for the area widths of Riemannian manifolds (2024) | arXiv
[6] Sur le spectre d’une variété riemannienne, C. R. Math., Volume 263 (1966), p. A13-A16 | MR | Zbl
[7] Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93, Springer, 1978, ix+262 pages | DOI | MR | Zbl
[8] Minimal surfaces and the Allen–Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates, Ann. Math., Volume 191 (2020) no. 1, pp. 213-328 | Zbl
[9] The
[10] Geometric analysis (Cetraro, Italy, 2018) (Matthew J. Gursky; Andrea Malchiodi, eds.), Lecture Notes in Mathematics, 2263, Springer, 2020, ix+144 pages | DOI | MR
[11] Über Flächen mit lauter geschlossenen geodätischen Linien, Diss. Göttingen. 23 S. 8
[12] Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., Volume 110 (1992) no. 1, pp. 1-22 | DOI | MR | Zbl
[13] Isospectral deformations of compact solvmanifolds, J. Differ. Geom., Volume 19 (1984) no. 1, pp. 241-256 | MR | Zbl
[14] On metrics on
[15] Dimension, non-linear spectra and width, Geometric aspects of functional analysis (Joram Lindenstrauss; Vitali D. Milman, eds.) (Lecture Notes in Mathematics), Volume 1317, Springer (1988), pp. 132-184 | DOI | Zbl
[16] Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., Volume 13 (2003) no. 1, pp. 178-215 | DOI | MR | Zbl
[17] Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry, Geom. Funct. Anal., Volume 20 (2010) no. 2, pp. 416-526 | DOI | MR | Zbl
[18] The Radon transform on Zoll surfaces, Adv. Math., Volume 22 (1976) no. 1, pp. 85-119 | DOI | MR | Zbl
[19] Minimax problems related to cup powers and Steenrod squares, Geom. Funct. Anal., Volume 18 (2009), pp. 1917-1987 | DOI | MR | Zbl
[20] Quatre propriétés isopérimétriques de membranes sphériques homogènes, C. R. Math., Volume 270 (1970), p. A1645-A1648 | Zbl
[21] Density of minimal hypersurfaces for generic metrics, Ann. Math., Volume 187 (2018) no. 3, pp. 963-972 | Zbl
[22] Can one hear the shape of a drum?, Am. Math. Mon., Volume 73 (1966) no. 4P2, pp. 1-23 | MR | Zbl
[23] Existence of infinitely many minimal hypersurfaces in higher-dimensional closed manifolds with generic metrics, J. Differ. Geom., Volume 124 (2023) no. 2, pp. 381-395 | MR | Zbl
[24] Weyl law for the volume spectrum, Ann. Math., Volume 187 (2018) no. 3, pp. 933-961 | Zbl
[25] Morse inequalities for the area functional, J. Differ. Geom., Volume 124 (2023) no. 1, pp. 81-111 | MR | Zbl
[26] Min-max theory and the Willmore conjecture, Ann. Math. (2), Volume 179 (2014) no. 2, pp. 683-782 | DOI | MR | Zbl
[27] Morse index and multiplicity of min-max minimal hypersurfaces (2015) | arXiv
[28] Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math., Volume 209 (2017) no. 2, pp. 577-616 | DOI | MR | Zbl
[29] Applications of min-max methods to geometry, Geometric analysis (Cetraro, Italy, 2018) (Lecture Notes in Mathematics), Volume 2263, Springer, 2020, pp. 41-77 | DOI | MR | Zbl
[30] Morse index of multiplicity one min-max minimal hypersurfaces, Adv. Math., Volume 378 (2021), 107527, 58 pages | MR | Zbl
[31] Equidistribution of minimal hypersurfaces for generic metrics, Invent. Math., Volume 216 (2019) no. 2, pp. 421-443 | DOI | MR | Zbl
[32] Index, intersections, and multiplicity of min-max geodesics (2024) | arXiv
[33] Eigenvalues of the Laplace operator on certain manifolds, Proc. Natl. Acad. Sci. USA, Volume 51 (1964) no. 4, p. 542-542 | DOI | MR | Zbl
[34] Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes, 27, Princeton University Press; University of Tokyo Press, 1981, iv+330 pages | DOI | MR
[35] Regularity of stable minimal hypersurfaces, Commun. Pure Appl. Math., Volume 34 (1981) no. 6, pp. 741-797 | DOI | MR | Zbl
[36] Existence of infinitely many minimal hypersurfaces in closed manifolds (2018) | arXiv
[37] Problem section, Seminar on differential geometry (Annals of Mathematics Studies), Volume 102, Princeton University Press, 1982, pp. 669-706 | MR | Zbl
[38] On the multiplicity one conjecture in min-max theory, Ann. Math., Volume 192 (2020) no. 3, pp. 767-820 | Zbl
[39] Über Flächen mit Scharen von geschlossenen geodätischen Linien. Gekrönte Preisschrift., Göttingen. Universitäts-Buchdr. W. Fr. Kaestner. 47 S. (1901), 1901 | Zbl
Cité par Sources :
Commentaires - Politique