Comptes Rendus
Article de recherche - Géométrie et Topologie
The isospectral problem for p-widths: an application of Zoll metrics
[Le problème isospectral pour les p-largeurs : une application des métriques de Zoll]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 565-570.

We pose the isospectral problem for the p-widths: is a Riemannian manifold (Mn+1,g) uniquely determined by its p-widths, {ωp(M,g)}p=1? We construct many counterexamples on S2 using Zoll metrics and the fact that geodesic p-widths are given by unions of immersed geodesics.

Nous posons le problème isospectral pour les p-largeurs : une variété Riemannienne (Mn+1,g) est-elle uniquement déterminée par ses p-largeurs, {ωp(M,g)}p=1 ? Nous construisons de nombreux contre-exemples sur S2 en utilisant les métriques de Zoll et le fait que les p-largeurs géodésiques sont données par des unions de géodésiques immergées.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.708
Classification : 53C22
Keywords: Min-max, p-widths, Zoll, geodesics
Mots-clés : Min-max, p-largeurs, Zoll, géodesiques

Jared Marx-Kuo 1

1 450 Jane Stanford Way, Stanford, United States of America
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G6_565_0,
     author = {Jared Marx-Kuo},
     title = {The isospectral problem for $p$-widths: an application of {Zoll} metrics},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {565--570},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.708},
     language = {en},
}
TY  - JOUR
AU  - Jared Marx-Kuo
TI  - The isospectral problem for $p$-widths: an application of Zoll metrics
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 565
EP  - 570
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.708
LA  - en
ID  - CRMATH_2025__363_G6_565_0
ER  - 
%0 Journal Article
%A Jared Marx-Kuo
%T The isospectral problem for $p$-widths: an application of Zoll metrics
%J Comptes Rendus. Mathématique
%D 2025
%P 565-570
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.708
%G en
%F CRMATH_2025__363_G6_565_0
Jared Marx-Kuo. The isospectral problem for $p$-widths: an application of Zoll metrics. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 565-570. doi : 10.5802/crmath.708. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.708/

[1] Nicolau Sarquis Aiex The width of ellipsoids (2016) | arXiv

[2] Frederick Justin Almgren The homotopy groups of the integral cycle groups, Topology, Volume 1 (1962) no. 4, pp. 257-299 | DOI | MR | Zbl

[3] Frederick Justin Almgren The theory of varifolds (1965) https://albert.ias.edu/... (Mimeographed notes)

[4] Lucas Ambrozio; Fernando C. Marques; André Neves Riemannian metrics on the sphere with Zoll families of minimal hypersurfaces (2021) | arXiv

[5] Lucas Ambrozio; Fernando C. Marques; André Neves Rigidity theorems for the area widths of Riemannian manifolds (2024) | arXiv

[6] Marcel Berger Sur le spectre d’une variété riemannienne, C. R. Math., Volume 263 (1966), p. A13-A16 | MR | Zbl

[7] Arthur L. Besse Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93, Springer, 1978, ix+262 pages | DOI | MR | Zbl

[8] Otis Chodosh; Christos Mantoulidis Minimal surfaces and the Allen–Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates, Ann. Math., Volume 191 (2020) no. 1, pp. 213-328 | Zbl

[9] Otis Chodosh; Christos Mantoulidis The p-widths of a surface, Publ. Math., Inst. Hautes Étud. Sci., Volume 137 (2023) no. 1, pp. 245-342 | DOI | Zbl

[10] Ailana Fraser; André Neves; Peter M. Topping; Paul C. Yang Geometric analysis (Cetraro, Italy, 2018) (Matthew J. Gursky; Andrea Malchiodi, eds.), Lecture Notes in Mathematics, 2263, Springer, 2020, ix+144 pages | DOI | MR

[11] Paul Funk Über Flächen mit lauter geschlossenen geodätischen Linien, Diss. Göttingen. 23 S. 8 (1911), 1911 | Zbl

[12] Carolyn S. Gordon; David Webb; Scott Wolpert Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., Volume 110 (1992) no. 1, pp. 1-22 | DOI | MR | Zbl

[13] Carolyn S. Gordon; Edward N. Wilson Isospectral deformations of compact solvmanifolds, J. Differ. Geom., Volume 19 (1984) no. 1, pp. 241-256 | MR | Zbl

[14] Detlef Gromoll; Karsten Grove On metrics on S2 all of whose geodesics are closed, Invent. Math., Volume 65 (1981) no. 1, pp. 175-177 | DOI | MR | Zbl

[15] Mikhail Gromov Dimension, non-linear spectra and width, Geometric aspects of functional analysis (Joram Lindenstrauss; Vitali D. Milman, eds.) (Lecture Notes in Mathematics), Volume 1317, Springer (1988), pp. 132-184 | DOI | Zbl

[16] Mikhail Gromov Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., Volume 13 (2003) no. 1, pp. 178-215 | DOI | MR | Zbl

[17] Mikhail Gromov Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry, Geom. Funct. Anal., Volume 20 (2010) no. 2, pp. 416-526 | DOI | MR | Zbl

[18] Victor Guillemin The Radon transform on Zoll surfaces, Adv. Math., Volume 22 (1976) no. 1, pp. 85-119 | DOI | MR | Zbl

[19] Larry Guth Minimax problems related to cup powers and Steenrod squares, Geom. Funct. Anal., Volume 18 (2009), pp. 1917-1987 | DOI | MR | Zbl

[20] Joseph Hersch Quatre propriétés isopérimétriques de membranes sphériques homogènes, C. R. Math., Volume 270 (1970), p. A1645-A1648 | Zbl

[21] Kei Irie; Fernando C. Marques; André Neves Density of minimal hypersurfaces for generic metrics, Ann. Math., Volume 187 (2018) no. 3, pp. 963-972 | Zbl

[22] Mark Kac Can one hear the shape of a drum?, Am. Math. Mon., Volume 73 (1966) no. 4P2, pp. 1-23 | MR | Zbl

[23] Yangyang Li Existence of infinitely many minimal hypersurfaces in higher-dimensional closed manifolds with generic metrics, J. Differ. Geom., Volume 124 (2023) no. 2, pp. 381-395 | MR | Zbl

[24] Yevgeny Liokumovich; Fernando C. Marques; André Neves Weyl law for the volume spectrum, Ann. Math., Volume 187 (2018) no. 3, pp. 933-961 | Zbl

[25] Fernando C. Marques; Rafael Montezuma; André Neves Morse inequalities for the area functional, J. Differ. Geom., Volume 124 (2023) no. 1, pp. 81-111 | MR | Zbl

[26] Fernando C. Marques; André Neves Min-max theory and the Willmore conjecture, Ann. Math. (2), Volume 179 (2014) no. 2, pp. 683-782 | DOI | MR | Zbl

[27] Fernando C. Marques; André Neves Morse index and multiplicity of min-max minimal hypersurfaces (2015) | arXiv

[28] Fernando C. Marques; André Neves Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math., Volume 209 (2017) no. 2, pp. 577-616 | DOI | MR | Zbl

[29] Fernando C. Marques; André Neves Applications of min-max methods to geometry, Geometric analysis (Cetraro, Italy, 2018) (Lecture Notes in Mathematics), Volume 2263, Springer, 2020, pp. 41-77 | DOI | MR | Zbl

[30] Fernando C. Marques; André Neves Morse index of multiplicity one min-max minimal hypersurfaces, Adv. Math., Volume 378 (2021), 107527, 58 pages | MR | Zbl

[31] Fernando C. Marques; André Neves; Antoine Song Equidistribution of minimal hypersurfaces for generic metrics, Invent. Math., Volume 216 (2019) no. 2, pp. 421-443 | DOI | MR | Zbl

[32] Jared Marx-Kuo; Lorenzo Sarnataro; Douglas Stryker Index, intersections, and multiplicity of min-max geodesics (2024) | arXiv

[33] John Milnor Eigenvalues of the Laplace operator on certain manifolds, Proc. Natl. Acad. Sci. USA, Volume 51 (1964) no. 4, p. 542-542 | DOI | MR | Zbl

[34] Jon T. Pitts Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes, 27, Princeton University Press; University of Tokyo Press, 1981, iv+330 pages | DOI | MR

[35] Richard Schoen; Leon Simon Regularity of stable minimal hypersurfaces, Commun. Pure Appl. Math., Volume 34 (1981) no. 6, pp. 741-797 | DOI | MR | Zbl

[36] Antoine Song Existence of infinitely many minimal hypersurfaces in closed manifolds (2018) | arXiv

[37] Shing Tung Yau Problem section, Seminar on differential geometry (Annals of Mathematics Studies), Volume 102, Princeton University Press, 1982, pp. 669-706 | MR | Zbl

[38] Xin Zhou On the multiplicity one conjecture in min-max theory, Ann. Math., Volume 192 (2020) no. 3, pp. 767-820 | Zbl

[39] Otto Zoll Über Flächen mit Scharen von geschlossenen geodätischen Linien. Gekrönte Preisschrift., Göttingen. Universitäts-Buchdr. W. Fr. Kaestner. 47 S. (1901), 1901 | Zbl

Cité par Sources :

Commentaires - Politique