logo CRAS
Comptes Rendus. Mathématique
Number Theory,  Homological Algebra
A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings
Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 33-39.

We prove Gersten’s conjecture for étale cohomology over two dimensional henselian regular local rings without assuming equi-characteristic. As an application, we obtain the local-global principle for Galois cohomology over mixed characteristic two-dimensional henselian local rings.

Nous montrons la conjecture de Gersten pour la cohomologie étale sur des anneaux locaux réguliers henséliens sans supposer de caractère équicaractéristique. En application, nous obtenons le principe local-global pour la cohomologie de Galois sur des anneaux locaux henséliens à deux dimensions de caractéristique mixte.

Received : 2019-04-30
Revised : 2019-09-17
Accepted : 2019-12-17
Published online : 2020-03-19
DOI : https://doi.org/10.5802/crmath.9
@article{CRMATH_2020__358_1_33_0,
     author = {Makoto Sakagaito},
     title = {A note on Gersten's conjecture for \'etale cohomology over two-dimensional henselian regular local rings},
     journal = {Comptes Rendus. Math\'ematique},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {1},
     year = {2020},
     pages = {33-39},
     doi = {10.5802/crmath.9},
     language = {en},
     url={comptes-rendus.academie-sciences.fr/mathematique/item/CRMATH_2020__358_1_33_0/}
}
Makoto Sakagaito. A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings. Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 33-39. doi : 10.5802/crmath.9. https://comptes-rendus.academie-sciences.fr/mathematique/item/CRMATH_2020__358_1_33_0/

[1] Michael Artin Grothendieck Topologies, Harvard University, 1962 | Zbl 0208.48701

[2] Spencer Bloch; Arthur Ogus Gersten’s conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Supér., Tome 7 (1974), pp. 181-201 | Article | MR 412191 | Zbl 0307.14008

[3] Jean-Louis Colliot-Thélène Quelques problèmes locaux-globaux (2011) (personal notes)

[4] Jean-Louis Colliot-Thélène; Raymond T. Hoobler; Bruno Kahn The Bloch–Ogus–Gabber theorem, Algebraic K-theory (Fields Institute Communications) Tome 16, American Mathematical Society, 1997, pp. 31-94 | MR 1466971 | Zbl 0911.14004

[5] Kazuhiro Fujiwara A proof of the absolute purity conjecture (after Gabber), Algebraic geometry 2000, Azumino (Hotaka) (Advanced Studies in Pure Mathematics) Tome 36, Mathematical Society of Japan, 2000, pp. 153-183 | MR 1971516 | Zbl 1059.14026

[6] Thomas Geisser Motivic cohomology over Dedekind rings, Math. Z., Tome 248 (2004) no. 4, pp. 773-794 | Article | Zbl 1062.14025

[7] David Harbater; Julia Hartmann; Daniel Krashen Local-global principles for Galois cohomology, Comment. Math. Helv., Tome 89 (2014) no. 1, pp. 215-253 | Article | MR 3177913 | Zbl 1332.11046

[8] Yong Hu A Cohomological Hasse Principle Over Two-dimensional Local Rings, Int. Math. Res. Not., Tome 2017 (2017) no. 14, pp. 4369-4397 | MR 3674174 | Zbl 1405.11042

[9] James S. Milne Étale Cohomology, Princeton Mathematical Series, Tome 33, Princeton University Press, 1980 | MR 559531 | Zbl 0433.14012

[10] Ivan A. Panin The equicharacteristic case of the Gersten conjecture, Tr. Mat. Inst. Im. V. A. Steklova, Tome 241 (2003) no. 2, pp. 169-178 | MR 2024050 | Zbl 1115.19300

[11] Shuji Saito Arithmetic on two-dimensional local rings, Invent. Math., Tome 85 (1986), pp. 379-414 | Article | MR 846934 | Zbl 0609.13003

[12] Makoto Sakagaito On problems about a generalization of the Brauer group (2016) (https://arxiv.org/abs/1511.09232v2)

[13] Makoto Sakagaito On a generalized Brauer group in mixed characteristic cases (2019) (https://arxiv.org/abs/1710.11449v2)

[14] Vladimir Voevodsky On motivic cohomology with Z/l-coefficients, Ann. Math., Tome 174 (2011) no. 1, pp. 401-438 | MR 2811603 | Zbl 1236.14026