We consider the vibrations of a membrane that contains a very thin and heavy inclusion around a curve γ. We assume that the membrane occupies a domain of . The inclusion occupies a layer-like domain of width 2ε and it has a density of order O(ε−3). The density is of order O(1) outside this inclusion, the concentrated mass around the curve γ. ε is a positive parameter, ε∈(0,1). By means of asymptotic expansions, we describe the behaviour, as ε→0, of the eigenelements (λε,uε) of the associated spectral problem. We provide complete asymptotic series for the low frequencies λε=O(ε2), the medium frequencies λε=O(ε) and the corresponding eigenfunctions uε.
On considère les vibrations d'une membrane qui contient une très mince et très lourde inclusion placée autour d'une courbe γ. On suppose que la membrane occupe un domaine , tandis que l'inclusion occupe une couche de largeur 2ε, la densité étant d'ordre O(ε−3). La densité est d'ordre O(1) en dehors de la petite inclusion : la masse est concentrée autour de γ. ε est un petit paramètre, ε∈(0,1). À l'aide des développements asymptotiques, nous décrivons le comportement, pour ε→0, des éléments propres (λε,uε) du problème spectral associé. En fait, nous obtenons les séries asymptotiques complètes pour les basses fréquences λε=O(ε2) et les moyennes fréquences λε=O(ε), ainsi que les fonctions propres correspondantes uε.
Revised:
Published online:
Mots-clés : vibrations, masses concentrées, analyse spectrale, basses fréquences, moyennes fréquences
Yuri Golovaty 1; Delfina Gómez 2; Miguel Lobo 2; Eugenia Pérez 3
@article{CRMECA_2002__330_11_777_0, author = {Yuri Golovaty and Delfina G\'omez and Miguel Lobo and Eugenia P\'erez}, title = {Asymptotics for the eigenelements of vibrating membranes with very heavy thin inclusions}, journal = {Comptes Rendus. M\'ecanique}, pages = {777--782}, publisher = {Elsevier}, volume = {330}, number = {11}, year = {2002}, doi = {10.1016/S1631-0721(02)01531-0}, language = {en}, }
TY - JOUR AU - Yuri Golovaty AU - Delfina Gómez AU - Miguel Lobo AU - Eugenia Pérez TI - Asymptotics for the eigenelements of vibrating membranes with very heavy thin inclusions JO - Comptes Rendus. Mécanique PY - 2002 SP - 777 EP - 782 VL - 330 IS - 11 PB - Elsevier DO - 10.1016/S1631-0721(02)01531-0 LA - en ID - CRMECA_2002__330_11_777_0 ER -
%0 Journal Article %A Yuri Golovaty %A Delfina Gómez %A Miguel Lobo %A Eugenia Pérez %T Asymptotics for the eigenelements of vibrating membranes with very heavy thin inclusions %J Comptes Rendus. Mécanique %D 2002 %P 777-782 %V 330 %N 11 %I Elsevier %R 10.1016/S1631-0721(02)01531-0 %G en %F CRMECA_2002__330_11_777_0
Yuri Golovaty; Delfina Gómez; Miguel Lobo; Eugenia Pérez. Asymptotics for the eigenelements of vibrating membranes with very heavy thin inclusions. Comptes Rendus. Mécanique, Volume 330 (2002) no. 11, pp. 777-782. doi : 10.1016/S1631-0721(02)01531-0. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01531-0/
[1] Vibrations of a membrane with many concentrated masses near the boundary, Math. Models Methods Appl. Sci, Volume 5 (1995) no. 5, pp. 565-585
[2] Mathematical Problems in Elasticity and Homogenization, North-Holland, London, 1992
[3] Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Heidelberg, 1989
[4] Asymptotic expansions of local eigenvibrations for plate with density perturbed in neighbourhood of one-dimensional manifold, Mat. Studii, Volume 13 (2000) no. 1, pp. 51-62
[5] H. Tchatat, Perturbations Spectrales pour des Systèmes avec Masses Concentrées, Thése 3eme cycle, Université Pierre et Marie Curie, Paris VI, Paris, 1984
[6] Yu.D. Golovaty, D. Gómez, M. Lobo, E. Pérez, Vibrating membranes with very thin heavy inclusions around curves, in preparation
Cited by Sources:
Comments - Policy