This Note deals with the linearized water-wave problem involving a surface-piercing cylinder in water of infinite depth. A solution to this problem is proved to be unique for all values of the radian frequency when the cylinder intersecting the free surface at arbitrary angles is subjected to certain geometric arrangements.
Cette Note porte sur un problème linéarisée du mouvement sur la houle d'un cylindre flottant dans une mer de profondeur infinie. L'unicité du problème est démontrée pour toutes les valeurs de la fréquence d'ondes si la forme du cylindre qui peut intersecter la surface libre sous d'angles arbitraires satisfait á des certaines conditions géométriques.
Accepted:
Published online:
Mots-clés : Mécanique des fluides, Ondes de surface, Cylindre flottant, Transformation conforme, Identité intégrale, Théorème d'unicité
Nikolay Kuznetsov 1
@article{CRMECA_2004__332_1_73_0, author = {Nikolay Kuznetsov}, title = {Uniqueness in the water-wave problem for bodies intersecting the free surface at arbitrary angles}, journal = {Comptes Rendus. M\'ecanique}, pages = {73--78}, publisher = {Elsevier}, volume = {332}, number = {1}, year = {2004}, doi = {10.1016/j.crme.2003.10.008}, language = {en}, }
Nikolay Kuznetsov. Uniqueness in the water-wave problem for bodies intersecting the free surface at arbitrary angles. Comptes Rendus. Mécanique, Volume 332 (2004) no. 1, pp. 73-78. doi : 10.1016/j.crme.2003.10.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.10.008/
[1] On the motion of floating bodies. II, Comm. Pure Appl. Math., Volume 3 (1950), pp. 45-101
[2] Uniqueness in linearized two-dimensional water-wave problems, J. Fluid Mech., Volume 148 (1984), pp. 137-154
[3] Linear Water Waves: A Mathematical Approach, Cambridge University Press, 2002
[4] An example of non-uniqueness in the two-dimensional linear water-wave problem, J. Fluid Mech., Volume 315 (1996), pp. 257-266
[5] Some Unsolved and Unfinished Problems in the Theory of Waves, Wave Asymptotics, Cambridge University Press, 1992
[6] Field Theory Handbook, Springer-Verlag, 1971
[7] Methods of Theoretical Physics, Part II, McGraw-Hill, 1953
[8] On the problem of the steady state oscillations of a fluid layer of variable depth, Trans. Moscow Math. Soc., Volume 28 (1973), pp. 56-73
[9] Uniqueness and trapped modes for a symmetric structure, Proc. of the 14th Int. Workshop on Water Waves and Floating Bodies, University of Michigan, Ann Arbor, 1999
Cited by Sources:
Comments - Policy