A general review of the current research in vortex dynamics is presented, based on contributions given during a workshop held in May 2003 at Porquerolles, France. This article aims at providing a picture of the work performed on this subject in the French community. Various cases are covered, from 2D vortex patches to 3D vortex tubes; from isolated vortices to shear flows. Different contexts are considered: pure Euler and Navier–Stokes flows as well as stratified, rotating and magnetic flows.
Nous présentons une revue des recherches actuellement menées dans le domaine de la dynamique des tourbillons. Elle s'appuie sur les travaux exposés lors de la conférence « Tourbillons en hydrodynamique » qui s'est tenue à Porquerolles en mai 2003. Les sujets abordés couvrent un large éventail thématique : du tourbillon bidimensionnel au tube de vorticité tridimensionnel, qu'il soit isolé ou au sein de couches cisaillées. Ces écoulements sont étudiés dans le cadre des équations d'Euler ou de Navier–Stokes et sont éventuellement soumis à des effets de stratification, de Coriolis ou de champ magnétique.
Accepted:
Published online:
Mots-clés : Mécanique des fluides, Tourbillons, Écoulements cisaillés, Écoulements géophysiques, Magnétohydrodynamique, Contrôle
Ivan Delbende 1, 2; Thomas Gomez 2, 3; Christophe Josserand 3; Caroline Nore 1, 4; Maurice Rossi 3
@article{CRMECA_2004__332_9_767_0, author = {Ivan Delbende and Thomas Gomez and Christophe Josserand and Caroline Nore and Maurice Rossi}, title = {Various aspects of fluid vortices}, journal = {Comptes Rendus. M\'ecanique}, pages = {767--781}, publisher = {Elsevier}, volume = {332}, number = {9}, year = {2004}, doi = {10.1016/j.crme.2004.04.003}, language = {en}, }
TY - JOUR AU - Ivan Delbende AU - Thomas Gomez AU - Christophe Josserand AU - Caroline Nore AU - Maurice Rossi TI - Various aspects of fluid vortices JO - Comptes Rendus. Mécanique PY - 2004 SP - 767 EP - 781 VL - 332 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2004.04.003 LA - en ID - CRMECA_2004__332_9_767_0 ER -
Ivan Delbende; Thomas Gomez; Christophe Josserand; Caroline Nore; Maurice Rossi. Various aspects of fluid vortices. Comptes Rendus. Mécanique, Volume 332 (2004) no. 9, pp. 767-781. doi : 10.1016/j.crme.2004.04.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.04.003/
[1] Point-vortex cluster formation in the plane and on the sphere: an energy bifurcation condition, Chaos, Volume 13 (2003), pp. 824-835
[2] Evolution of vortex statistics in two-dimensional turbulence, Phys. Rev. Lett., Volume 66 (1991), pp. 2735-2737
[3] A merging criterion for two-dimensional co-rotating vortices, Phys. Fluids, Volume 14 (2001), pp. 2757-2766
[4] C. Josserand, M. Rossi, in preparation
[5] Comparing the two-dimensional cascades of vorticity and passive scalar, J. Fluid Mech., Volume 492 (2003), pp. 131-145
[6] Rotating shallow-water flow past an obstacle: numerical and laboratory experiments (G.H. Jirka; W.S.J. Uijttewaal, eds.), Proceeding of the International Symposium on Shallow Flows, vol. II, 16–18 june, 2003, TU Delft, 2003, pp. 61-66
[7] A. Stegner, T. Pichon, M. Beunier, in press
[8] G. Rousseaux, H. Yoshikawa, A. Stegner, J.E. Wesfreid, Dynamics of transient vortex above rolling-grain ripples, Phys. Fluids, submitted for publication
[9] Instability and unsteadiness of aircraft wake vortices, Aerospace Sci. Technol., Volume 7 (2003), pp. 577-593
[10] A. Antkowiak, P. Brancher, Transient energy growth for the Lamb–Oseen vortex, Phys. Rev. Lett. (2003), submitted for publication
[11] Optimal perturbations in four-vortex aircraft wake in counter-rotating configuration, J. Fluid Mech., Volume 451 (2002), pp. 319-328
[12] L. Lacaze, P. Le Gal, S. Le Dizes, Elliptical instability in a rotating spheroid J. Fluid Mech., in press
[13] Instabilité elliptique en géométrie sphérique 16e, Congrès Français de Mécanique, Nice 1–5 septembre, 2003
[14] Three-dimensional stability of a Burgers vortex, J. Fluid Mech., Volume 500 (2004), pp. 103-112
[15] Vortex dynamics in perfect fluids, J. Plasma Phys., Volume 56 (1996), p. 3
[16] Y. Pomeau, D. Sciamarella, Finite time blowup solutions of 3D incompressible Euler equations: a scenario, J. Fluid Mech. (2003), submitted for publication
[17] A non uniformly stretched vortex, Phys. Rev. Lett., Volume 92 (2004) no. 5, p. 054504
[18] Vortex burst as a source of turbulence, Phys. Rev. Lett., Volume 91 (2003), p. 194502
[19] J. Lamoine, A. Maurel, P. Petitjeans, Ph.D. thesis, in preparation
[20] Viscous instabilities in trailing vortices at large swirl numbers, J. Fluid Mech., Volume 500 (2004), pp. 239-326
[21] S. Le Dizes, D. Fabre, Asymptotic analysis of viscous centre modes in vortices, in preparation
[22] Stretching effects on the three-dimensional stability of vortices with axial flow, J. Fluid Mech., Volume 454 (2002), pp. 419-442
[23] On the persistence of trailing vortices, J. Fluid Mech., Volume 471 (2002), pp. 159-168
[24] Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid, J. Fluid Mech., Volume 418 (2000), pp. 167-188
[25] Theoretical analysis of the zigzag instability of a vertical columnar vortex pair in a strongly stratified fluid, J. Fluid Mech., Volume 419 (2000), pp. 29-63
[26] Three-dimensional stability of a vertical columnar vortex pair in a stratified fluid, J. Fluid Mech., Volume 419 (2000), pp. 65-91
[27] P. Otheguy, P. Billant, J.M. Chomaz, in preparation
[28] Experimental and numerical study of the shear layer instability between two counter-rotating disks, J. Fluid Mech., Volume 507 (2004), pp. 175-202
[29] C. Nore, M. Tartar, O. Daube, L.S. Tuckerman, Survey of instability thresholds of flow between exactly counter-rotating disks, J. Fluid Mech. (2004), in press
[30] The 1:2 mode interaction in exactly counter-rotating von Kármán swirling flow, J. Fluid Mech., Volume 477 (2003), pp. 51-88
[31] Instabilité d'une nappe de vorticité étirée instationnaire, C. R. Mecanique, Volume 331 (2003), pp. 141-147
[32] Couche de mélange étirée instationnaire : stabilité linéaire, 16e Congrès Français de Mécanique, Nice 1–5 septembre, 2003
[33] Symmetry breaking and chaos in perturbed plane Couette flow, Theoret. Comput. Fluid Dynamics, Volume 16 (2002), pp. 91-97
[34] Stability analysis of perturbed plane Couette flow, Phys. Fluids, Volume 11 (1999), pp. 1187-1195
[35] Transient growth in Taylor–Couette flow, Phys. Fluids, Volume 14 (2002), pp. 3475-3484
[36] Stability of a vortex sheet roll-up, Phys. Fluids, Volume 14 (2002), p. 3829
[37] H. Bratec, Modélisation numérique des jets : application aux inverseurs de poussée, Ph.D. Thesis, University of Le Havre (2003) (in French)
[38] Three-dimensional instability and vorticity patterns in the wake of a flat plate, J. Fluid Mech., Volume 479 (2003), pp. 155-189
[39] S. Julien, J. Lasheras, J.-M. Chomaz, Secondary instability mechanisms in the wake of a flat plate, in preparation
[40] Interactions of the wakes of two spheres placed side by side, Eur. J. Mech. B Fluids, Volume 23 (2004) no. 1, pp. 137-145
[41] Vortex dynamics of particle interactions with walls (K. Hourigan et al., eds.), Proceedings of the Conference on Bluff Body Wakes and Vortex-Induced Vibrations, Monash University, Melbourne, Australie, 2002, pp. 113-116 (ISBN 0-7326-2108-9)
[42] J.-F. Beaudoin, O. Cadot, J.-L. Aider, E. Weisfreid, Three-dimensional stationary flow over a backward-facing step, Eur. J. Mech. B Fluids (2003), submitted for publication
[43] On the onset of nonlinear oscillations in a separating boundary-layer flow, J. Fluid Mech., Volume 490 (2003), pp. 169-188
[44] Contrôle du sillage d'un cylindre oscillant, 16e Congrès Français de Mécanique, Nice 1–5 septembre, 2003
[45] F. Gallaire, J.-M. Chomaz, P. Huerre, Closed loop control of vortex breakdown: a model study, J. Fluid Mech. (2003), submitted for publication
[46] Geometrical analysis of chaotic mixing in a low Reynolds number magnetohydrodynamic quadripolar flow, Phys. Rev. E, Volume 63 (2001), p. 056309
[47] Note on chaotic advection in an oscillating drop, Phys. Fluids, Volume 15 (2003) no. 1, p. 261
[48] Inertial Bénard–Marangoni convection, J. Fluid Mech., Volume 350 (1997), pp. 149-175
[49] Bénard–Marangoni convection at low Prandtl number, J. Fluid Mech., Volume 399 (1999), pp. 251-275
Cited by Sources:
Comments - Policy