The two-dimensional damped Boussinesq equation with a forcing term is considered in a unit disc. It governs forced, small, nonlinear oscillations of a thin elastic membrane in the presence of viscosity. The eigenfunction expansion method is used for constructing global-in-time solutions of the initial-boundary-value problem in question. Specially designed anisotropic Sobolev spaces are introduced in order to reflect the effect of nonlinear smoothing in the angular coordinate. Existence and uniqueness in these spaces are proved on the basis of the construction.
L'équation de Boussinesq amortie à deux dimensions avec terme de forçage est considérée dans un disque unité. Elle gouverne les petites oscillations non linéaires, forcées d'une membrane élastique fine en présence de viscosité. La méthode de développement en fonctions propres est utilisée pour la construction des solutions globales en temps de problème mixte considéré. Des espaces anisotropes de Sobolev spécialement conçus, sont introduits pour démontrer l'effet de régularité non linéaire dans la coordonnée angulaire. L'existence et l'unicité dans ces espaces sont prouvées sur la base de cette construction.
Accepted:
Published online:
Mot clés : Vibrations, Équation de Boussinesq, Disque, Espaces de Sobolev anisotropes
Vladimir Varlamov 1
@article{CRMECA_2007__335_9-10_548_0, author = {Vladimir Varlamov}, title = {Two-dimensional {Boussinesq} equation in a disc and anisotropic {Sobolev} spaces}, journal = {Comptes Rendus. M\'ecanique}, pages = {548--558}, publisher = {Elsevier}, volume = {335}, number = {9-10}, year = {2007}, doi = {10.1016/j.crme.2007.08.008}, language = {en}, }
Vladimir Varlamov. Two-dimensional Boussinesq equation in a disc and anisotropic Sobolev spaces. Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, pp. 548-558. doi : 10.1016/j.crme.2007.08.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.08.008/
[1] Étude nouvelle sur l'équilibre et le mouvement des corps solides élastiques dont certaines dimensions sont très petites par rapport à d'autres. Premier mémoire : des tiges. Second mémoire : des plaques planes, J. Math. Pures Appl., Ser. II, Volume 16 (1871), pp. 125-274
[2] Complément à une étude de 1871 sur la théorie de l'équilibre et du mouvement des solides élastiques…, J. Math. Pures Appl., Ser. III, Volume 5 (1879), pp. 163-194 (and 329–344)
[3] Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal…, J. Math. Pures Appl., Ser. II, Volume 17 (1872), pp. 55-108
[4] Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys., Volume 118 (1988), pp. 15-29
[5] Inverse scattering and the Boussinesq equation, Comm. Pure Appl. Math., Volume 35 (1982), pp. 567-628
[6] Solutions of the classical Boussinesq equation and the spherical Boussinesq equation: the Wronskian technique, J. Phys. Soc. Japan, Volume 55 (1986), pp. 2137-2150
[7] Asymptotic behavior of solutions of a generalized Boussinesq-type equation, Nonlinear Anal., Volume 25 (1995), pp. 1147-1158
[8] Instability and blow up of solutions to a generalized Boussinesq equation, SIAM J. Math. Anal., Volume 26 (1995), pp. 1527-1546
[9] Finite element Galerkin method for the “good” Boussinesq equation, Nonlinear Anal., Volume 29 (1997) no. 8, pp. 937-956
[10] Eigenvalues and instabilities of solitary waves, Phil. Trans. Roy. Soc. London A, Volume 340 (1992), pp. 47-94
[11] On the Cauchy problem for the Boussinesq-type equation, Math. Japonica, Volume 36 (1991), pp. 371-379
[12] A two-dimensional Boussinesq equation for water waves and some of its solutions, J. Fluid Mech., Volume 323 (1996), pp. 65-78
[13] Global existence and decay for solutions to the “bad” Boussinesq equation in two space dimensions, Appl. Anal., Volume 83 (2004) no. 1, pp. 17-36
[14] More results on the decay of solutions to nonlinear dispersive wave equations, Discrete & Continuous Dynamical Systems, Volume 1 (1995), pp. 151-193
[15] Partial Differential Equations of Mathematical Physics and Integral Equations, Prentice Hall, New Jersey, 1988
[16] Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser, Boston, 1994
[17] On the initial-boundary value problem for the damped Boussinesq equation, Discrete & Continuous Dynamical Systems, Volume 4 (1998) no. 3, pp. 431-444
[18] On the spatially two-dimensional Boussinesq equation in a circular domain, Nonlinear Anal., Volume 46 (2001), pp. 699-725
[19] Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation, Discrete & Continuous Dynamical Systems, Volume 7 (2001) no. 4, pp. 675-702
[20] Approximation of Functions of Several Variables and Imbedding Theorems, Springer, Berlin, New York, 1975
[21] Convolution of Rayleigh functions with respect to the Bessel index, J. Math. Anal. Appl., Volume 306 (2005), pp. 413-424
[22] Special functions arising in the study of semi-linear equations in circular domains, J. Comp. Appl. Math., Volume 202 (2007), pp. 105-121
[23] A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, London, 1966
[24] Mechanical and thermal null controllability of thermoelastic plates and singularity of the associated minimal energy function, Control and Cybernetics, Volume 32 (2003) no. 3, pp. 473-490
[25] Theory of Elasticity, Pergamon, New York, 1964
[26] Fourier Series, Dover Publ., New York, 1962
[27] Introduction to Asymptotics and Special Functions, Acad. Press, New York, San Fransisco, London, 1974
[28] Nonlinear dynamic response of membranes: state of the art, Appl. Mech. Rev., Volume 44 (1991) no. 7, pp. 319-328
[29] Forced nonlinear oscillations of elastic membranes, Nonlinear Anal., Volume 7 (2006), pp. 1005-1028
Cited by Sources:
Comments - Policy