The spectra of the elasticity and piezo-electricity systems for a solid with a sharp peak point on the boundary, which is free of traction, are not discrete. An algebraic criterion of non-empty continuous spectrum is found for the Neumann problem for rather arbitrary formally self-adjoint elliptic systems of second-order differential equations on a sharp peak-shaped domain.
Les spectres de l'élasticité et de systèmes piezo-electriques pour un solide avec une pointe sur la frontière, sans traction, ne sont pas discrets. Un critère algébrique de spectre continu non-vide est établi pour le problème de Neumann pour des systèmes elliptiques formellements auto-adjoints arbitraires d'équations differentielles du deuxième ordre dans un domaine de forme pointue.
Accepted:
Published online:
Mot clés : Mécanique des solides numérique, Système de l'elasticité, Pic, Pointe, Essentiel, Spectre continu et discret
Sergey A. Nazarov 1
@article{CRMECA_2007__335_12_751_0, author = {Sergey A. Nazarov}, title = {A criterion of the continuous spectrum for elasticity and other self-adjoint systems on sharp peak-shaped domains}, journal = {Comptes Rendus. M\'ecanique}, pages = {751--756}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2007}, doi = {10.1016/j.crme.2007.10.019}, language = {en}, }
TY - JOUR AU - Sergey A. Nazarov TI - A criterion of the continuous spectrum for elasticity and other self-adjoint systems on sharp peak-shaped domains JO - Comptes Rendus. Mécanique PY - 2007 SP - 751 EP - 756 VL - 335 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2007.10.019 LA - en ID - CRMECA_2007__335_12_751_0 ER -
Sergey A. Nazarov. A criterion of the continuous spectrum for elasticity and other self-adjoint systems on sharp peak-shaped domains. Comptes Rendus. Mécanique, Volume 335 (2007) no. 12, pp. 751-756. doi : 10.1016/j.crme.2007.10.019. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.019/
[1] Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates, Nauchnaya Kniga, Novosibirsk, 2001
[2] Spectral Theory of Selfadjoint Operators in Hilbert Space, D. Reidel Publ. Co., Dordrecht, 1987
[3] Math. Notes, 62 (1997), pp. 629-641 (Erratum: Math. Notes, 63, 1998, pp. 565)
[4] C. R. Acad. Sci. Paris, Ser. 2, 311 (1990), pp. 909-916
[5] Siberian Math. J., 41 (2000), pp. 744-759
[6] Les méthodes in théorie des équations elliptiques, Masson–Academia, Paris–Prague, 1967
[7] J. Math. Sci., 92 (1998) no. 6, pp. 4338-4353
[8] Elliptic Boundary Value Problems in Domains with Point Singularities, Amer. Math. Soc., Providence, 1997
[9] Russ. Math. Surveys, 54 (1999) no. 5, pp. 947-1014
[10] J. Math. Sci., 114 (2003), pp. 1657-1725
Cited by Sources:
⁎ The author gratefully acknowledges the support by N.W.O., the Netherlands Organization for Scientific Research.
Comments - Policy