Comptes Rendus
Algorithm to refine a finite volume mesh admissible for parabolic problems
[Algorithme de raffinement de maillage volumes finis admissible]
Comptes Rendus. Mécanique, Volume 337 (2009) no. 2, pp. 95-100.

On présente un algorithme simple de raffinement de maillage bidimensionnel de type volumes finis adapté à la résolution d'équations aux dérivées partielles elliptiques ou paraboliques. L'approximation du Laplacien se ramène à celle de flux normaux sur les arêtes des volumes de contrôle. Le calcul du flux est simple si on choisit les centres des mailles de telle sorte que la droite qui joint deux centres voisins soit toujours orthogonale à leur arête commune (maillage admissible). Le processus de raffinement proposé est original car il permet la construction d'un maillage admissible pouvant être utilisé dans un cadre classique très répandu.

We present a simple algorithm to refine a finite volume bidimensional mesh admissible to solve elliptic or parabolic partial differential equations. The approximation of the Laplace operator reduces to the one of the normal fluxes along the edges of control volumes. These normal fluxes can be computed in a consistent way by a classical two points flux approximation simple if the mesh is admissible in the finite volume sense. The originality of the mesh refinement technique that we propose, is to preserve the admissibility property of the meshes. Therefore it can be used in a wide classic context.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2009.03.001
Keywords: Computational fluid mechanics, Computer science, Finite volume, Mesh refinement, Laplace operator
Mot clés : Mécanique des fluides numériques, Algorithmique, Volumes finis, Raffinement de maillage, Laplacien
Florence Hubert 1 ; Marie-Claude Viallon 2

1 Université de Provence, CMI, Technopôle de Château Gombert, 39, rue F. Joliot Curie, 13453 Marseille cedex 13, France
2 UFR Sciences de Saint-Etienne, departement de mathématiques, 23, rue du docteur Paul-Michelon, 42023 Saint-Etienne, France
@article{CRMECA_2009__337_2_95_0,
     author = {Florence Hubert and Marie-Claude Viallon},
     title = {Algorithm to refine a finite volume mesh admissible for parabolic problems},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {95--100},
     publisher = {Elsevier},
     volume = {337},
     number = {2},
     year = {2009},
     doi = {10.1016/j.crme.2009.03.001},
     language = {en},
}
TY  - JOUR
AU  - Florence Hubert
AU  - Marie-Claude Viallon
TI  - Algorithm to refine a finite volume mesh admissible for parabolic problems
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 95
EP  - 100
VL  - 337
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2009.03.001
LA  - en
ID  - CRMECA_2009__337_2_95_0
ER  - 
%0 Journal Article
%A Florence Hubert
%A Marie-Claude Viallon
%T Algorithm to refine a finite volume mesh admissible for parabolic problems
%J Comptes Rendus. Mécanique
%D 2009
%P 95-100
%V 337
%N 2
%I Elsevier
%R 10.1016/j.crme.2009.03.001
%G en
%F CRMECA_2009__337_2_95_0
Florence Hubert; Marie-Claude Viallon. Algorithm to refine a finite volume mesh admissible for parabolic problems. Comptes Rendus. Mécanique, Volume 337 (2009) no. 2, pp. 95-100. doi : 10.1016/j.crme.2009.03.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.001/

[1] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis, 2000

[2] I.D. Mishev Finite volume methods on Voronoï meshes, Numer. Methods Partial Differential Equations, Volume 14 (1998), pp. 193-212

[3] I. Faille A control volume method to solve an elliptic equation on a 2D irregular meshing, Comp. Meth. Appl. Mech. Engrg., Volume 100 (1992), pp. 275-290

[4] R. Cautrés; R. Herbin; F. Hubert The Lions domain decomposition algorithm on non matching cell-centered finite volume meshes, IMA J. Numer. Anal., Volume 24 (2004), pp. 465-490

[5] W.J. Coirier, An adaptively-refined, Cartesian, cell-based scheme for the Euler and Navier–Stokes equations. Ph.D. thesis, Michigan Univ., NASA Lewis Research Center, 1994

[6] M.J. Berger; P. Colella Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., Volume 82 (1989), pp. 64-84

[7] R. Herbin, F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in: Proceedings of the 5th International Symposium on Finite Volumes for Complex Applications, 2008

[8] F. Hjelle; M. Daehlen Triangulations and Applications, Springer, 2006 (pp. 47–71)

[9] I. Faille, Modélisation bidimensionnelle de la génèse et la migration des hydrocarbures dans un bassin sédimentaire. Thesis, Univ. Grenoble, 1992

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Error estimate for a 1D–2D finite volume scheme. Comparison with a standard scheme on a 2D non-admissible mesh

Marie-Claude Viallon

C. R. Math (2013)


Domain decomposition for a finite volume method on non-matching grids

Laurent Saas; Isabelle Faille; Frédéric Nataf; ...

C. R. Math (2004)


Un schéma linéaire vérifiant le principe du maximum pour des opérateurs de diffusion très anisotropes sur des maillages déformés

Christophe Le Potier

C. R. Math (2009)