We present a simple algorithm to refine a finite volume bidimensional mesh admissible to solve elliptic or parabolic partial differential equations. The approximation of the Laplace operator reduces to the one of the normal fluxes along the edges of control volumes. These normal fluxes can be computed in a consistent way by a classical two points flux approximation simple if the mesh is admissible in the finite volume sense. The originality of the mesh refinement technique that we propose, is to preserve the admissibility property of the meshes. Therefore it can be used in a wide classic context.
On présente un algorithme simple de raffinement de maillage bidimensionnel de type volumes finis adapté à la résolution d'équations aux dérivées partielles elliptiques ou paraboliques. L'approximation du Laplacien se ramène à celle de flux normaux sur les arêtes des volumes de contrôle. Le calcul du flux est simple si on choisit les centres des mailles de telle sorte que la droite qui joint deux centres voisins soit toujours orthogonale à leur arête commune (maillage admissible). Le processus de raffinement proposé est original car il permet la construction d'un maillage admissible pouvant être utilisé dans un cadre classique très répandu.
Accepted:
Published online:
Mots-clés : Mécanique des fluides numériques, Algorithmique, Volumes finis, Raffinement de maillage, Laplacien
Florence Hubert 1; Marie-Claude Viallon 2
@article{CRMECA_2009__337_2_95_0, author = {Florence Hubert and Marie-Claude Viallon}, title = {Algorithm to refine a finite volume mesh admissible for parabolic problems}, journal = {Comptes Rendus. M\'ecanique}, pages = {95--100}, publisher = {Elsevier}, volume = {337}, number = {2}, year = {2009}, doi = {10.1016/j.crme.2009.03.001}, language = {en}, }
Florence Hubert; Marie-Claude Viallon. Algorithm to refine a finite volume mesh admissible for parabolic problems. Comptes Rendus. Mécanique, Volume 337 (2009) no. 2, pp. 95-100. doi : 10.1016/j.crme.2009.03.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.001/
[1] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis, 2000
[2] Finite volume methods on Voronoï meshes, Numer. Methods Partial Differential Equations, Volume 14 (1998), pp. 193-212
[3] A control volume method to solve an elliptic equation on a 2D irregular meshing, Comp. Meth. Appl. Mech. Engrg., Volume 100 (1992), pp. 275-290
[4] The Lions domain decomposition algorithm on non matching cell-centered finite volume meshes, IMA J. Numer. Anal., Volume 24 (2004), pp. 465-490
[5] W.J. Coirier, An adaptively-refined, Cartesian, cell-based scheme for the Euler and Navier–Stokes equations. Ph.D. thesis, Michigan Univ., NASA Lewis Research Center, 1994
[6] Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., Volume 82 (1989), pp. 64-84
[7] R. Herbin, F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in: Proceedings of the 5th International Symposium on Finite Volumes for Complex Applications, 2008
[8] Triangulations and Applications, Springer, 2006 (pp. 47–71)
[9] I. Faille, Modélisation bidimensionnelle de la génèse et la migration des hydrocarbures dans un bassin sédimentaire. Thesis, Univ. Grenoble, 1992
Cited by Sources:
Comments - Policy