Comptes Rendus
Enhanced acoustic transmission through a slanted grating
Comptes Rendus. Mécanique, Volume 343 (2015) no. 12, pp. 622-634.

It is known that an acoustic wave incident on an infinite array of aligned rectangular blocks of a different acoustic material exhibits total transmission if certain conditions are met [1] which relate the unique “intromission” angle of incidence with geometric and material properties of the slab. This extraordinary acoustic transmission phenomenon holds for any slab thickness, making it analogous to a Brewster effect in optics, and is independent of frequency as long as the slab microstructure is sub-wavelength in the length-wise direction. Here we show that the enhanced transmission effect is obtained in a slab with grating elements oriented obliquely to the slab normal. The dependence of the intromission angle θi is given explicitly in terms of the orientation angle. Total transmission is achieved at incidence angles ±θi, with a relative phase shift between the transmitted amplitudes of the +θi and θi cases. These effects are shown to follow from explicit formulas for the transmission coefficient. In the case of grating elements that are rigid the results have direct physical interpretation. The analytical findings are illustrated with full wave simulations.

Published online:
DOI: 10.1016/j.crme.2015.06.006
Keywords: Acoustic, Grating, Enhanced transmission, Oblique

Andrew N. Norris 1; Xiaoshi Su 1

1 Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854-8058, USA
     author = {Andrew N. Norris and Xiaoshi Su},
     title = {Enhanced acoustic transmission through a slanted grating},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {622--634},
     publisher = {Elsevier},
     volume = {343},
     number = {12},
     year = {2015},
     doi = {10.1016/j.crme.2015.06.006},
     language = {en},
AU  - Andrew N. Norris
AU  - Xiaoshi Su
TI  - Enhanced acoustic transmission through a slanted grating
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 622
EP  - 634
VL  - 343
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2015.06.006
LA  - en
ID  - CRMECA_2015__343_12_622_0
ER  - 
%0 Journal Article
%A Andrew N. Norris
%A Xiaoshi Su
%T Enhanced acoustic transmission through a slanted grating
%J Comptes Rendus. Mécanique
%D 2015
%P 622-634
%V 343
%N 12
%I Elsevier
%R 10.1016/j.crme.2015.06.006
%G en
%F CRMECA_2015__343_12_622_0
Andrew N. Norris; Xiaoshi Su. Enhanced acoustic transmission through a slanted grating. Comptes Rendus. Mécanique, Volume 343 (2015) no. 12, pp. 622-634. doi : 10.1016/j.crme.2015.06.006.

[1] A. Maurel; S. Félix; J.-F. Mercier Enhanced transmission through gratings: structural and geometrical effects, Phys. Rev. B, Volume 88 (2013) no. 11, p. 115416 | DOI

[2] G. D'Aguanno; K.Q. Le; R. Trimm; A. Alù; N. Mattiucci; A.D. Mathias; N. Aközbek; M.J. Bloemer Broadband metamaterial for nonresonant matching of acoustic waves, Sci. Rep., Volume 2 (2012), p. 340 | DOI

[3] J.B. Keller Geometrical theory of diffraction, J. Opt. Soc. Amer., Volume 52 (1962) no. 2, p. 116 | DOI

[4] A. Alù; G. D'Aguanno; N. Mattiucci; M.J. Bloemer Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings, Phys. Rev. Lett., Volume 106 (2011) no. 12, p. 123902 | DOI

[5] C. Argyropoulos; G. D'Aguanno; N. Mattiucci; N. Akozbek; M.J. Bloemer; A. Alù Matching and funneling light at the plasmonic Brewster angle, Phys. Rev. B, Volume 85 (2012) no. 2, p. 024304 | DOI

[6] N. Aközbek; N. Mattiucci; D. de Ceglia; R. Trimm; A. Alù; G. D'Aguanno; M.A. Vincenti; M. Scalora; M.J. Bloemer Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave, Phys. Rev. B, Volume 85 (2012) no. 20, p. 205430 | DOI

[7] A. Akarid; A. Ourir; A. Maurel; S. Felix; J.-F. Mercier Extraordinary transmission through subwavelength dielectric gratings in the microwave range, Opt. Lett., Volume 39 (2014) no. 13, p. 3752 | DOI

[8] C. Qiu; R. Hao; F. Li; S. Xu; Z. Liu Broadband transmission enhancement of acoustic waves through a hybrid grating, Appl. Phys. Lett., Volume 100 (2012) no. 19, p. 191908 | DOI

[9] D.-X. Qi; R.-H. Fan; R.-W. Peng; X.-R. Huang; M.-H. Lu; X. Ni; Q. Hu; M. Wang Multiple-band transmission of acoustic wave through metallic gratings, Appl. Phys. Lett., Volume 101 (2012) no. 6, p. 061912 | DOI

[10] N. Aközbek; N. Mattiucci; M.J. Bloemer; M. Sanghadasa; G. D'Aguanno Manipulating the extraordinary acoustic transmission through metamaterial-based acoustic band gap structures, Appl. Phys. Lett., Volume 104 (2014) no. 16, p. 161906 | DOI

[11] M.G. Silveirinha Anomalous refraction of light colors by a metamaterial prism, Phys. Rev. Lett., Volume 102 (2009) no. 19, p. 193903 | DOI

[12] R. Fleury; A. Alù Metamaterial buffer for broadband non-resonant impedance matching of obliquely incident acoustic waves, J. Acoust. Soc. Amer., Volume 136 (2014) no. 6, pp. 2935-2940 | DOI

[13] D.-X. Qi; Y.-Q. Deng; D.-H. Xu; R.-H. Fan; R.-W. Peng; Z.-G. Chen; M.-H. Lu; X.R. Huang; M. Wang Broadband enhanced transmission of acoustic waves through serrated metal gratings, Appl. Phys. Lett., Volume 106 (2015) no. 1, p. 011906 | DOI

[14] A. Castanié; J.-F. Mercier; S. Félix; A. Maurel Generalized method for retrieving effective parameters of anisotropic metamaterials, Opt. Express, Volume 22 (2014) no. 24, p. 29937 | DOI

[15] J.D. Achenbach Reciprocity in Elastodynamics, Cambridge University Press, Cambridge, UK, 2004 | DOI

[16] X. Zheng; H. Lee; T.H. Weisgraber; M. Shusteff; J.R. Deotte; E. Duoss; J.D. Kuntz; M.M. Biener; S.O. Kucheyev; Q. Ge; J. Jackson; N.X. Fang; C.M. Spadaccini Ultra-light, ultra-stiff mechanical metamaterials, Science, Volume 344 (2014), pp. 1373-1377 | DOI

[17] A.N. Norris, A.J. Nagy, Metal water: a metamaterial for acoustic cloaking, in: Proceedings of Phononics 2011, Santa Fe, NM, USA, 29 May–2, June 2011, pp. 112–113 [Paper Phononics-2011-0037].

[18] A.-C. Hladky-Hennion; J.O. Vasseur; G. Haw; C. Croënne; L. Haumesser; A.N. Norris Negative refraction of acoustic waves using a foam-like metallic structure, Appl. Phys. Lett., Volume 102 (2013) no. 14, p. 144103 | DOI

[19] A.N. Norris; A.L. Shuvalov Wave impedance matrices for cylindrically anisotropic radially inhomogeneous elastic materials, Q. J. Mech. Appl. Math., Volume 63 (2010), pp. 1-35 | DOI

Cited by Sources:

Comments - Policy