Comptes Rendus
Transformation optics for plasmonics: from metasurfaces to excitonic strong coupling
[Optique transformationnelle pour la plasmonique : des métasurfaces à l’excitonique en fort couplage]
Comptes Rendus. Physique, Volume 21 (2020) no. 4-5, pp. 389-408.

Nous passons en revue les dernières avancées dans l’application du cadre de l’optique transformationnelle pour la description analytique des phénomènes électromagnétiques en régime fortement sub-longueur d’onde. En premier lieu, nous présentons une description générale de la technique, ainsi que son exploitation usuelle dans la conception et l’optimisation des métamatériaux dans différentes disciplines de la physique des ondes. En second lieu, nous discutons en détail de la conception de métasurfaces plasmoniques, y compris la description de géométries singulières qui permettent une absorption sur une large plage de fréquences dans les plates-formes ultra-minces. Enfin, nous discutons du traitement quasi-analytique du couplage fort plasmon–exciton dans les nanocavités au niveau d’un seul émetteur.

We review the latest theoretical advances in the application of the framework of Transformation Optics for the analytical description of deeply sub-wavelength electromagnetic phenomena. First, we present a general description of the technique, together with its usual exploitation for metamaterial conception and optimization in different areas of wave physics. Next, we discuss in detail the design of plasmonic metasurfaces, including the description of singular geometries which allow for broadband absorption in ultrathin platforms. Finally, we discuss the quasi-analytical treatment of plasmon–exciton strong coupling in nanocavities at the single emitter level.

Première publication :
Publié le :
DOI : 10.5802/crphys.22
Keywords: Transformation optics, Plasmonics, Metasurfaces, Excitonic strong coupling
Mot clés : Optique transformationnelle, Plasmonique, Métasurface, Excitonique en fort couplage

Paloma A. Huidobro 1 ; Antonio I. Fernández-Domínguez 2

1 Instituto de Telecomunicaçōes, Insituto Superior Teécnico-University of Lisbon, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
2 Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2020__21_4-5_389_0,
     author = {Paloma A. Huidobro and Antonio I. Fern\'andez-Dom{\'\i}nguez},
     title = {Transformation optics for plasmonics: from metasurfaces to excitonic strong coupling},
     journal = {Comptes Rendus. Physique},
     pages = {389--408},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {21},
     number = {4-5},
     year = {2020},
     doi = {10.5802/crphys.22},
     language = {en},
}
TY  - JOUR
AU  - Paloma A. Huidobro
AU  - Antonio I. Fernández-Domínguez
TI  - Transformation optics for plasmonics: from metasurfaces to excitonic strong coupling
JO  - Comptes Rendus. Physique
PY  - 2020
SP  - 389
EP  - 408
VL  - 21
IS  - 4-5
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.22
LA  - en
ID  - CRPHYS_2020__21_4-5_389_0
ER  - 
%0 Journal Article
%A Paloma A. Huidobro
%A Antonio I. Fernández-Domínguez
%T Transformation optics for plasmonics: from metasurfaces to excitonic strong coupling
%J Comptes Rendus. Physique
%D 2020
%P 389-408
%V 21
%N 4-5
%I Académie des sciences, Paris
%R 10.5802/crphys.22
%G en
%F CRPHYS_2020__21_4-5_389_0
Paloma A. Huidobro; Antonio I. Fernández-Domínguez. Transformation optics for plasmonics: from metasurfaces to excitonic strong coupling. Comptes Rendus. Physique, Volume 21 (2020) no. 4-5, pp. 389-408. doi : 10.5802/crphys.22. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.22/

[1] A. J. Ward; J. B. Pendry Refraction and geometry in Maxwell’s equations, J. Mod. Opt., Volume 43 (1996) no. 4, pp. 773-793 | DOI | MR | Zbl

[2] J. B. Pendry; D. Schurig; D. R. Smith Controlling Electromagnetic Fields, Science, Volume 312 (2006) no. 5781, pp. 1780-1782 | DOI | MR | Zbl

[3] H. Chen; C. T. Chan; P. Sheng Transformation optics and metamaterials, Nat. Mater., Volume 9 (2010) no. 5, pp. 387-396 | DOI

[4] F. Sun; B. Zheng; H. Chen; W. Jiang; S. Guo; Y. Liu; Y. Ma; S. He Transformation optics: from classic theory and applications to its new branches, Laser Photon. Rev., Volume 11 (2017) no. 6, 1700034

[5] M. W. McCall; A. Favaro; P. Kinsler; A. Boardman A spacetime cloak, or a history editor, J. Opt., Volume 13 (2010) no. 2, 024003

[6] M. Fridman; A. Farsi; Y. Okawachi; A. L. Gaeta Demonstration of temporal cloaking, Nature, Volume 481 (2012) no. 7379, p. 62 | DOI

[7] U. Leonhardt; T. G. Philbin General relativity in electrical engineering, New J. Phys., Volume 8 (2006) no. 10, p. 247 | DOI

[8] A. Greenleaf; Y. Kurylev; M. Lassas; G. Uhlmann Electromagnetic wormholes and virtual magnetic monopoles from metamaterials, Phys. Rev. Lett., Volume 99 (2007) no. 18, 183901 | DOI

[9] I. I. Smolyaninov; E. E. Narimanov Metric signature transitions in optical metamaterials, Phy. Rev. Lett., Volume 105 (2010) no. 6, 067402

[10] R. T. Thompson; S. A. Cummer; J. Frauendiener A completely covariant approach to transformation optics, J. Opt., Volume 13 (2010) no. 2, 024008

[11] S. Horsley; C. King; T. Philbin Wave propagation in complex coordinates, J. Opt., Volume 18 (2016) no. 4, 044016 | DOI

[12] S. Horsley; M. Artoni; G. La Rocca Spatial kramers–kronig relations and the reflection of waves, Nat. Photon., Volume 9 (2015) no. 7, p. 436 | DOI

[13] C. E. Rüter; K. G. Makris; R. El-Ganainy; D. N. Christodoulides; M. Segev; D. Kip Observation of parity–time symmetry in optics, Nat. Phys., Volume 6 (2010) no. 3, p. 192 | DOI

[14] G. Castaldi; S. Savoia; V. Galdi; A. Alu; N. Engheta P t metamaterials via complex-coordinate transformation optics, Phys. Rev. Lett., Volume 110 (2013) no. 17, 173901 | DOI

[15] R. Mitchell-Thomas; T. McManus; O. Quevedo-Teruel; S. Horsley; Y. Hao Perfect surface wave cloaks, Phys. Rev. Lett., Volume 111 (2013) no. 21, 213901 | DOI

[16] S. Viaene; V. Ginis; J. Danckaert; P. Tassin Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides, Phys. Rev. B, Volume 93 (2016), 085429 | DOI

[17] O. Quevedo-Teruel; W. Tang; R. C. Mitchell-Thomas; A. Dyke; H. Dyke; L. Zhang; S. Haq; Y. Hao Transformation optics for antennas: why limit the bandwidth with metamaterials?, Sci. Rep., Volume 3 (2013), p. 1903 | DOI

[18] D. Schurig; J. J. Mock; B. J. Justice; S. A. Cummer; J. B. Pendry; A. F. Starr; D. R. Smith Metamaterial electromagnetic cloak at microwave frequencies, Science, Volume 314 (2006), p. 977 | DOI

[19] S. A. Cummer; D. Schurig One path to acoustic cloaking, New J. Phys., Volume 9 (2007) no. 3, p. 45 | DOI

[20] H. Chen; C. Chan Acoustic cloaking in three dimensions using acoustic metamaterials, Appl. Phys. Lett., Volume 91 (2007) no. 18, 183518 | DOI

[21] L. Zigoneanu; B.-I. Popa; S. A. Cummer Three-dimensional broadband omnidirectional acoustic ground cloak, Nat. Mater., Volume 13 (2014) no. 4, pp. 352-355 | DOI

[22] S. Zhang; D. A. Genov; C. Sun; X. Zhang Cloaking of matter waves, Phys. Rev. Lett., Volume 100 (2008) no. 12, 123002 | DOI

[23] S. Guenneau; C. Amra; D. Veynante Transformation thermodynamics: cloaking and concentrating heat flux, Opt. Exp., Volume 20 (2012) no. 7, pp. 8207-8218 | DOI

[24] G. W. Milton; M. Briane; J. R. Willis On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys., Volume 8 (2006) no. 10, p. 248-248 | DOI

[25] N. Stenger; M. Wilhelm; M. Wegener Experiments on elastic cloaking in thin plates, Phys. Rev. Lett., Volume 108 (2012) no. 1, 014301 | DOI

[26] T. Bückmann; M. Thiel; M. Kadic; R. Schittny; M. Wegener An elasto-mechanical unfeelability cloak made of pentamode metamaterials, Nat. Commun., Volume 5 (2014), p. 4130 | DOI

[27] T. Bückmann; M. Kadic; R. Schittny; M. Wegener Mechanical cloak design by direct lattice transformation, Proc. Natl Acad. Sci. USA, Volume 112 (2015) no. 16, pp. 4930-4934 | DOI

[28] M. Brun; S. Guenneau; A. B. Movchan Achieving control of in-plane elastic waves, Appl. Phys. Lett., Volume 94 (2009) no. 6, 061903 | DOI

[29] S. Brûlé; E. H. Javelaud; S. Enoch; S. Guenneau Experiments on seismic metamaterials: molding surface waves, Phys. Rev. Lett., Volume 112 (2014), 133901 | DOI

[30] P. A. Huidobro; M. L. Nesterov; L. Martín-Moreno; F. J. García-Vidal Transformation optics for plasmonics, Nano Lett., Volume 10 (2010) no. 6, pp. 1985-1990 | DOI

[31] Y. Liu; T. Zentgraf; G. Bartal; X. Zhang Transformational plasmon optics, Nano Lett., Volume 10 (2010) no. 6, pp. 1991-1997 | DOI

[32] M. Kadic; G. Dupont; S. Guenneau; S. Enoch Controlling surface plasmon polaritons in transformed coordinates, J. Mod. Opt., Volume 58 (2011) no. 12, pp. 994-1003 | DOI

[33] M. Kadic; S. Guenneau; S. Enoch; S. A. Ramakrishna Plasmonic space folding: focusing surface plasmons via negative refraction in complementary media, ACS Nano, Volume 5 (2011) no. 9, pp. 6819-6825 | DOI

[34] M. Kadic; S. Guenneau; S. Enoch; P. A. Huidobro; L. Martín-Moreno; F. J. García-Vidal; J. Renger; R. Quidant Transformation plasmonics, Nanophotonics, Volume 1 (2012) no. 1, pp. 51-64 | DOI

[35] P. A. Huidobro; M. L. Nesterov; L. Martín-Moreno; F. J. García-Vidal Moulding the flow of surface plasmons using conformal and quasiconformal mappings, New J. Phys., Volume 13 (2011) no. 3, 033011

[36] J. Renger; M. Kadic; G. Dupont; S. S. Aćimović; S. Guenneau; R. Quidant; S. Enoch Hidden progress: broadband plasmonic invisibility, Opt. Express, Volume 18 (2010) no. 15, pp. 15757-15768 | DOI

[37] T. Zentgraf; Y. Liu; M. H. Mikkelsen; J. Valentine; X. Zhang Plasmonic luneburg and eaton lenses, Nat. Nanotechnol., Volume 6 (2011) no. 3, p. 151 | DOI

[38] M. Alaoui; K. Rustomji; T. Chang; G. Tayeb; P. Sabouroux; R. Quidant; S. Enoch; S. Guenneau; R. Abdeddaim Cyclic concentrator, carpet cloaks and fisheye lens via transformation plasmonics, J. Opt., Volume 18 (2016) no. 4, 044023 | DOI

[39] J. Pendry; S. A. Ramakrishna Near-field lenses in two dimensions, J. Phys.: Condens. Matter, Volume 14 (2002) no. 36, p. 8463

[40] L. Novotny; B. Hecht Principles of Nano-Optics, Cambridge University Press, Cambridge, UK, 2012 | DOI

[41] A. Aubry; D. Y. Lei; S. A. Maier; J. Pendry Conformal transformation applied to plasmonics beyond the quasistatic limit, Phys. Rev. B, Volume 82 (2010) no. 20, 205109 | DOI

[42] J. Pendry; A. Aubry; D. Smith; S. Maier Transformation optics and subwavelength control of light, Science, Volume 337 (2012) no. 6094, pp. 549-552 | DOI | MR | Zbl

[43] Y. Luo; R. Zhao; A. I. Fernandez-Dominguez; S. A. Maier; J. B. Pendry Harvesting light with transformation optics, Sci. China Information Sci., Volume 56 (2013) no. 12, pp. 1-13 | DOI

[44] J. Pendry; Y. Luo; R. Zhao Transforming the optical landscape, Science, Volume 348 (2015) no. 6234, pp. 521-524 | DOI

[45] A. Aubry; D. Y. Lei; A. I. Fernández-Domínguez; Y. Sonnefraud; S. A. Maier; J. B. Pendry Plasmonic light-harvesting devices over the whole visible spectrum, Nano Lett., Volume 10 (2010) no. 7, pp. 2574-2579 | DOI

[46] A. Fernández-Domínguez; S. Maier; J. Pendry Collection and concentration of light by touching spheres: a transformation optics approach, Phys. Rev. Lett., Volume 105 (2010) no. 26, 266807 | DOI

[47] A. Aubry; D. Y. Lei; S. A. Maier; J. Pendry Broadband plasmonic device concentrating the energy at the nanoscale: the crescent-shaped cylinder, Phys. Rev. B, Volume 82 (2010) no. 12, 125430 | DOI

[48] A. I. Fernandez-Dominguez; Y. Luo; A. Wiener; J. Pendry; S. A. Maier Theory of three-dimensional nanocrescent light harvesters, Nano Lett., Volume 12 (2012) no. 11, pp. 5946-5953 | DOI

[49] M. Kraft; J. Pendry; S. Maier; Y. Luo Transformation optics and hidden symmetries, Phys. Rev. B, Volume 89 (2014) no. 24, 245125 | DOI

[50] A. Aubry; D. Y. Lei; S. A. Maier; J. B. Pendry Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach, ACS Nano, Volume 5 (2011) no. 4, pp. 3293-3308 | DOI

[51] J. Pendry; A. Fernández-Domínguez; Y. Luo; R. Zhao Capturing photons with transformation optics, Nat. Phys., Volume 9 (2013) no. 8, p. 518 | DOI

[52] A. Fernández-Domínguez; A. Wiener; F. García-Vidal; S. Maier; J. Pendry Transformation-optics description of nonlocal effects in plasmonic nanostructures, Phys. Rev. Lett., Volume 108 (2012) no. 10, 106802 | DOI

[53] A. Fernández-Domínguez; P. Zhang; Y. Luo; S. Maier; F. García-Vidal; J. Pendry Transformation-optics insight into nonlocal effects in separated nanowires, Phys. Rev. B, Volume 86 (2012) no. 24, 241110 | DOI

[54] M. Kraft; Y. Luo; J. Pendry Transformation optics: a time-and frequency-domain analysis of electron-energy loss spectroscopy, Nano Lett., Volume 16 (2016) no. 8, pp. 5156-5162 | DOI

[55] K. N. Reddy; P. Y. Chen; A. I. Fernández-Domínguez; Y. Sivan Surface second-harmonic generation from metallic-nanoparticle configurations: a transformation-optics approach, Phys. Rev. B, Volume 99 (2019) no. 23, 235429

[56] R. Zhao; Y. Luo; A. Fernández-Domínguez; J. B. Pendry Description of van der waals interactions using transformation optics, Phys. Rev. Lett., Volume 111 (2013) no. 3, 033602 | DOI

[57] Y. Luo; R. Zhao; J. B. Pendry van der Waals interactions at the nanoscale: the effects of nonlocality, Proc. Natl Acad. Sci. USA, Volume 111 (2014) no. 52, pp. 18422-18427 | DOI

[58] S. Yu; H. Ammari Hybridization of singular plasmons via transformation optics, Proc. Natl Acad. Sci. USA, Volume 116 (2019) no. 28, pp. 13785-13790 (https://www.pnas.org/content/116/28/13785.full.pdf) | DOI

[59] C. L. Holloway; E. F. Kuester; J. A. Gordon; J. O’Hara; J. Booth; D. R. Smith An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag., Volume 54 (2012) no. 2, pp. 10-35 | DOI

[60] A. V. Kildishev; A. Boltasseva; V. M. Shalaev Planar photonics with metasurfaces, Science, Volume 339 (2013) no. 6125, 1232009

[61] A. E. Minovich; A. E. Miroshnichenko; A. Y. Bykov; T. V. Murzina; D. N. Neshev; Y. S. Kivshar Functional and nonlinear optical metasurfaces, Laser Photonics Rev., Volume 9 (2015) no. 2, pp. 195-213 | DOI

[62] S. B. Glybovski; S. A. Tretyakov; P. A. Belov; Y. S. Kivshar; C. R. Simovski Metasurfaces: from microwaves to visible, Phys. Rep., Volume 634 (2016), pp. 1-72 | DOI | MR

[63] F. Monticone; A. Alù Metamaterial, plasmonic and nanophotonic devices, Rep. Prog. Phys., Volume 80 (2017) no. 3, 036401 | DOI

[64] P. A. Huidobro; A. I. Fernández-Domínguez; J. B. Pendry; L. Martin-Moreno; F. Garcia-Vidal Spoof surface plasmon metamaterials, Elements in Emerging Theories and Technologies in Metamaterials, Cambridge University Press, Cambridge, UK, 2018

[65] X. Ni; N. K. Emani; A. V. Kildishev; A. Boltasseva; V. M. Shalaev Broadband light bending with plasmonic nanoantennas, Science, Volume 335 (2012) no. 6067, p. 427-427 | DOI

[66] N. Yu; P. Genevet; M. A. Kats; F. Aieta; J.-P. Tetienne; F. Capasso; Z. Gaburro Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science (New York), Volume 334 (2011) no. 6054, p. 333-7 | DOI

[67] P. Genevet; F. Capasso; F. Aieta; M. Khorasaninejad; R. Devlin Recent advances in planar optics: from plasmonic to dielectric metasurfaces, Optica, Volume 4 (2017) no. 1, pp. 139-152 | DOI

[68] N. Meinzer; W. L. Barnes; I. R. Hooper Plasmonic meta-atoms and metasurfaces, Nat. Photon., Volume 8 (2014) no. 12, p. 889 | DOI

[69] F. H. L. Koppens; D. E. Chang; F. J. García de Abajo Graphene plasmonics: a platform for strong light-matter interaction, Nano Lett., Volume 11 (2011) no. (8), pp. 3370-3377 | DOI

[70] L. Ju; B. Geng; J. Horng; C. Girit; M. Martin; Z. Hao; H. A. Bechtel; X. Liang; A. Zettl; Y. R. Shen; F. Wang Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol., Volume 6 (2011) no. 10, pp. 630-634 | DOI

[71] A. Y. Nikitin; F. Guinea; F. J. García-Vidal; L. Martín-Moreno Fields radiated by a nanoemitter in a graphene sheet, Phys. Rev. B, Volume 84 (2011) no. 19, 195446

[72] A. N. Grigorenko; M. Polini; K. S. Novoselov Graphene plasmonics, Nat. Photon., Volume 6 (2012) no. 11, pp. 749-758 | DOI

[73] T. Low; P. Avouris Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano, Volume 8 (2014) no. 2, pp. 1086-1101 | DOI

[74] J. Chandezon; G. Raoult; D. Maystre A new theoretical method for diffraction gratings and its numerical application, J. Opt., Volume 11 (1980) no. 4, pp. 235-241 | DOI

[75] W. L. Barnes; T. W. Preist; S. C. Kitson; J. R. Sambles Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings, Phys. Rev. B, Volume 54 (1996), pp. 6227-6244 | DOI

[76] M. Kraft; Y. Luo; S. A. Maier; J. B. Pendry Designing plasmonic gratings with transformation optics, Phys. Rev. X, Volume 5 (2015) no. 3, 031029

[77] P. A. Huidobro; Y. H. Chang; M. Kraft; J. B. Pendry Hidden symmetries in plasmonic gratings, Phys. Rev. B, Volume 95 (2017) no. 15, pp. 1-8

[78] P. A. Huidobro; M. Kraft; S. A. Maier; J. B. Pendry Graphene as a tunable anisotropic or isotropic plasmonic metasurface, ACS Nano, Volume 10 (2016) no. 5, pp. 5499-5506 | DOI

[79] COMSOL Comsol multiphysics, 1998 (published electronally at https://www.comsol.com/)

[80] J. B. Pendry; P. A. Huidobro; K. Ding Computing one-dimensional metasurfaces, Phys. Rev. B, Volume 99 (2019), 085408

[81] P. A. Huidobro; M. Kraft; R. Kun; S. A. Maier; J. B. Pendry Graphene, plasmons and transformation optics, J. Opt., Volume 18 (2016) no. 4, 044024

[82] N. Peres; Y. V. Bludov; A. Ferreira; M. I. Vasilevskiy Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range, J. Phys.: Condens. Matter, Volume 25 (2013) no. 12, 125303

[83] T. M. Slipchenko; M. L. Nesterov; L. Martin-Moreno; a. Y. Nikitin Analytical solution for the diffraction of an electromagnetic wave by a graphene grating, J. Opt. (Bristol, U. K.), Volume 15 (2013) no. 11, 114008

[84] P.-Y. Chen; C. Argyropoulos; M. Farhat; J. S. Gomez-Diaz Flatland plasmonics and nanophotonics based on graphene and beyond, Nanophotonics, Volume 6 (2017) no. 6, pp. 1239-1262 | DOI

[85] M. Baudisch; A. Marini; J. D. Cox; T. Zhu; F. Silva; S. Teichmann; M. Massicotte; F. Koppens; L. S. Levitov; F. J. G. de Abajo et al. Ultrafast nonlinear optical response of dirac fermions in graphene, Nat. Commun., Volume 9 (2018) no. 1, p. 1018 | DOI

[86] M. Bokdam; P. A. Khomyakov; G. Brocks; Z. Zhong; P. J. Kelly Electrostatic doping of graphene through ultrathin hexagonal boron nitride films, Nano Lett., Volume 11 (2011) no. 11, pp. 4631-4635 | DOI

[87] Y. Fan; N.-H. Shen; T. Koschny; C. M. Soukoulis Tunable terahertz meta-surface with graphene cut-wires, ACS Photon., Volume 2 (2015) no. 1, pp. 151-156 | DOI

[88] A. Y. Nikitin; F. Guinea; F. J. Garcia-Vidal; L. Martin-Moreno Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons, Phys. Rev. B, Volume 85 (2012) no. 8, 081405(R)

[89] A. Vakil; N. Engheta Transformation optics using graphene, Science (New York, N.Y.), Volume 332 (2011) no. 6035, pp. 1291-1294 | DOI

[90] D. A. Iranzo; S. Nanot; E. J. Dias; I. Epstein; C. Peng; D. K. Efetov; M. B. Lundeberg; R. Parret; J. Osmond; J.-Y. Hong et al. Probing the ultimate plasmon confinement limits with a van der waals heterostructure, Science, Volume 360 (2018) no. 6386, pp. 291-295 | DOI

[91] P. Huidobro; S. A. Maier; J. B. Pendry Tunable plasmonic metasurface for perfect absorption, EPJ Appl. Metamat., Volume 4 (2017), p. 6 | DOI

[92] N. M. Estakhri; A. Alù Physics of unbounded, broadband absorption/gain efficiency in plasmonic nanoparticles, Phys. Rev. B, Volume 87 (2013), 205418

[93] H. Wallén; H. Kettunen; A. Sihvola Anomalous absorption, plasmonic resonances, and invisibility of radially anisotropic spheres, Radio Sci., Volume 50 (2015) no. 1, pp. 18-28 | DOI

[94] F. Yang; Y.-T. Wang; P. A. Huidobro; J. B. Pendry Nonlocal effects in singular plasmonic metasurfaces, Phys. Rev. B, Volume 99 (2019), 165423 | DOI

[95] E. Galiffi; J. B. Pendry; P. A. Huidobro Broadband tunable THz absorption with singular graphene metasurfaces, ACS Nano, Volume 12 (2018) no. 2, pp. 1006-1013 | DOI

[96] T. Søndergaard; S. M. Novikov; T. Holmgaard; R. L. Eriksen; J. Beermann; Z. Han; K. Pedersen; S. I. Bozhevolnyi Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves, Nat. Commun., Volume 3 (2012), p. 969 | DOI

[97] J. Pendry; P. A. Huidobro; Y. Luo; E. Galiffi Compacted dimensions and singular plasmonic surfaces, Science, Volume 358 (2017) no. 6365, pp. 915-917 | DOI | MR | Zbl

[98] F. Yang; P. A. Huidobro; J. B. Pendry Transformation optics approach to singular metasurfaces, Phys. Rev. B, Volume 98 (2018), 125409 | DOI

[99] E. Galiffi; J. B. Pendry; P. A. Huidobro Singular graphene metasurfaces, EPJ Appl. Metamat., Volume 6 (2019), p. 10 | DOI

[100] F. Benz; M. K. Schmidt; A. Dreismann; R. Chikkaraddy; Y. Zhang; A. Demetriadou; C. Carnegie; H. Ohadi; B. de Nijs; R. Esteban; J. Aizpurua; J. J. Baumberg Single-molecule optomechanics in “picocavities”, Science, Volume 354 (2016) no. 6313, pp. 726-729 | DOI

[101] F. Yang; E. Galiffi; P. A. Huidobro; J. Pendry Nonlocal effects in plasmonic metasurfaces with almost touching surfaces, Phys. Rev. B, Volume 101 (2020) no. 7, 075434 | DOI

[102] E. Galiffi; P. A. Huidobro; P. A. D. Gonçalves; N. A. Mortensen; J. B. Pendry Probing graphene’s nonlocality with singular metasurfaces, Nanophotonics, Volume 9 (2020) no. 2, pp. 309-316 | DOI

[103] E. Muljarov; W. Langbein Resonant-state expansion of dispersive open optical systems: creating gold from sand, Phys. Rev. B, Volume 93 (2016) no. 7, 075417 | DOI

[104] P. Y. Chen; D. J. Bergman; Y. Sivan Generalizing normal mode expansion of electromagnetic green’s tensor to open systems, Phys. Rev. Appl., Volume 11 (2019) no. 4, 044018

[105] C. Sauvan; J.-P. Hugonin; I. Maksymov; P. Lalanne Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators, Phys. Rev. Lett., Volume 110 (2013) no. 23, 237401 | DOI

[106] P. T. Kristensen; S. Hughes Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators, ACS Photon., Volume 1 (2013) no. 1, pp. 2-10 | DOI

[107] M. I. Abdelrahman; B. Gralak Completeness and divergence-free behavior of the quasi-normalmodes using causality principle, OSA Contin., Volume 1 (2018), pp. 340-348 | DOI

[108] J. Yang; M. Perrin; P. Lalanne Analytical formalism for the interaction of two-level quantum systems with metal nanoresonators, Phys. Rev. X, Volume 5 (2015) no. 2, 021008

[109] S. Hughes; M. Richter; A. Knorr Quantized pseudomodes for plasmonic cavity qed, Opt. Lett., Volume 43 (2018) no. 8, pp. 1834-1837 | DOI

[110] S. Franke; S. Hughes; M. K. Dezfouli; P. T. Kristensen; K. Busch; A. Knorr; M. Richter Quantization of quasinormal modes for open cavities and plasmonic cavity quantum electrodynamics, Phys. Rev. Lett., Volume 122 (2019) no. 21, 213901 | DOI

[111] H. T. Dung; L. Knöll; D.-G. Welsch Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics, Phys. Rev. A, Volume 57 (1998) no. 5, p. 3931 | DOI

[112] R.-Q. Li; D. Hernángomez-Pérez; F. García-Vidal; A. Fernández-Domínguez Transformation optics approach to plasmon-exciton strong coupling in nanocavities, Phys. Rev. Lett., Volume 117 (2016) no. 10, 107401

[113] R.-Q. Li; F. García-Vidal; A. Fernandez-Dominguez Plasmon-exciton coupling in symmetry-broken nanocavities, ACS Photon., Volume 5 (2018) no. 1, pp. 177-185

[114] V. Pacheco-Peña; M. Beruete; A. I. Fernández-Domínguez; Y. Luo; M. Navarro-Cía Description of bow-tie nanoantennas excited by localized emitters using conformal transformation, Acs Photon., Volume 3 (2016) no. 7, pp. 1223-1232 | DOI

[115] V. Pacheco-Peña; A. I. Fernández-Domínguez; Y. Luo; M. Beruete; M. Navarro-Cía Aluminum nanotripods for light-matter coupling robust to nanoemitter orientation, Laser Photonics Rev., Volume 11 (2017) no. 5, 1700051 | DOI

[116] A. Cuartero-González; A. Fernández-Domínguez Light-forbidden transitions in plasmon-emitter interactions beyond the weak coupling regime, ACS Photon., Volume 5 (2018) no. 8, pp. 3415-3420 | DOI

[117] A. Cuartero-González; A. Fernández-Domínguez Dipolar and quadrupolar excitons coupled to a nanoparticle-on-a-mirror cavity, Phys. Rev. B, Volume 101 (2020), 035403 | DOI

[118] H.-P. Breuer; F. Petruccione et al. The Theory of Open Quantum Systems, Oxford University Press on Demand, Oxford, UK, 2002

[119] A. González-Tudela; P. Huidobro; L. Martín-Moreno; C. Tejedor; F. García-Vidal Reversible dynamics of single quantum emitters near metal-dielectric interfaces, Phys. Rev. B, Volume 89 (2014) no. 4, 041402 | DOI

[120] A. Delga; J. Feist; J. Bravo-Abad; F. Garcia-Vidal Quantum emitters near a metal nanoparticle: strong coupling and quenching, Phys. Rev. Lett., Volume 112 (2014) no. 25, 253601 | DOI

[121] V. Giannini; A. I. Fernández-Domínguez; S. C. Heck; S. A. Maier Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters, Chem. Rev., Volume 111 (2011) no. 6, pp. 3888-3912 | DOI

[122] A. Demetriadou; J. M. Hamm; Y. Luo; J. B. Pendry; J. J. Baumberg; O. Hess Spatiotemporal dynamics and control of strong coupling in plasmonic nanocavities, ACS Photon., Volume 4 (2017) no. 10, pp. 2410-2418 | DOI

[123] R. Esteban; J. Aizpurua; G. W. Bryant Strong coupling of single emitters interacting with phononic infrared antennae, New J. Phys., Volume 16 (2014) no. 1, 013052 | DOI

[124] R. Sáez-Blázquez; J. Feist; A. Fernández-Domínguez; F. García-Vidal Enhancing photon correlations through plasmonic strong coupling, Optica, Volume 4 (2017) no. 11, pp. 1363-1367 | DOI

[125] F. P. Laussy; E. Del Valle; C. Tejedor Strong coupling of quantum dots in microcavities, Phys. Rev. Lett., Volume 101 (2008) no. 8, 083601

[126] R. Sáez-Blázquez; J. Feist; F. García-Vidal; A. Fernández-Domínguez Photon statistics in collective strong coupling: nanocavities and microcavities, Phys. Rev. A, Volume 98 (2018) no. 1, 013839 | DOI

Cité par Sources :

Commentaires - Politique