[Ingénierie de la dispersion et de l’efficacité des méta-surfaces]
Les méta-surfaces, des réseaux bi-dimensionnels ultra-fins de méta-atomes artificiels, peuvent transférer les variations spatiales de leur structure au champ électromagnétique et conférer ainsi des fonctionnalités jusqu’alors inégalées dans les matériaux naturels d’épaisseur sous-longueur d’onde. La manipulation du front d’onde par les méta-surfaces est généralement obtenue en exploitant le caractère fortement résonant des méta-atomes dans le réseau sous-longueur d’onde, qui conduit par ailleurs à des inconvénients tels qu’une dispersion inattendue en raison des résonances distinctes des méta-atomes et un problème d’efficacité qui a fait l’objet d’une attention de longue date. Cet article passe en revue les percées récentes des travaux sur ces problématiques de la dispersion et de l’efficacité des méta-surfaces et il donne un aperçu de plusieurs méthodes permettant d’obtenir des méta-surfaces avec des propriétés remarquables.
Metasurfaces, ultrathin two-dimensional arrays of artificially engineered meta-atoms, can impart spatially varying changes towards the incident electromagnetic wave and provide versatile functionalities once unprecedented in sub-wavelength thick natural materials. The wavefront manipulation by metasurfaces usually arises from the strong resonant behaviors of varied meta-atoms in subwavelength lattice, which also brings some drawbacks like the unexpected dispersion due to separate resonances of the meta-atoms and the long concerned low efficiency problem. This paper reviews the recent surge of fruitful works on dispersion and efficiency engineering of metasurfaces and provides an overview of several effective methods to acquire metasurfaces with these distinctive features.
Publié le :
Mot clés : Métasurface, État lié dans le continuum, Ingénierie de dispersion, Matériel, Efficacité
Xiaomeng Zhang 1 ; Benfeng Bai 1 ; Hong-Bo Sun 1
@article{CRPHYS_2020__21_7-8_641_0, author = {Xiaomeng Zhang and Benfeng Bai and Hong-Bo Sun}, title = {Dispersion and efficiency engineering of metasurfaces}, journal = {Comptes Rendus. Physique}, pages = {641--657}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {7-8}, year = {2020}, doi = {10.5802/crphys.18}, language = {en}, }
Xiaomeng Zhang; Benfeng Bai; Hong-Bo Sun. Dispersion and efficiency engineering of metasurfaces. Comptes Rendus. Physique, Volume 21 (2020) no. 7-8, pp. 641-657. doi : 10.5802/crphys.18. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.18/
[1] Metamaterials: Theory, Design and Applications, Springer, New York, 2010
[2] Metamaterials and negative refractive index, Science, Volume 305 (2004) no. 5685, pp. 788-792
[3] Optical negative-index metamaterials, Nat. Photon., Volume 1 (2007) no. 1, p. 41
[4] Hyperbolic metamaterials, Nat. Photon., Volume 7 (2013) no. 12, p. 948
[5] Metamaterial electromagnetic cloak at microwave frequencies, Science, Volume 314 (2006) no. 5801, pp. 977-980
[6] Planar photonics with metasurfaces, Science, Volume 339 (2013) no. 6125, 1232009
[7] A review of metasurfaces: physics and applications, Rep. Prog. Phys., Volume 79 (2016) no. 7, 076401
[8] Selective diffraction with complex amplitude modulation by dielectric metasurfaces, Adv. Opt. Mater., Volume 6 (2018) no. 4, 1701181
[9] Functional and nonlinear optical metasurfaces, Laser Photon. Rev., Volume 9 (2015) no. 2, pp. 195-213
[10] Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics, Adv. Opt. Mater., Volume 6 (2018) no. 13, 1800104
[11] Nanoscale polarization manipulation and encryption based on dielectric metasurfaces, Adv. Opt. Mater., Volume 6 (2018) no. 19, 1800490
[12] Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface, Light: Sci. Appl., Volume 3 (2014) no. 5, e167
[13] An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag., Volume 54 (2012) no. 2, pp. 10-35
[14] Averaged transition conditions for electromagnetic fields at a metafilm, IEEE Trans. Antennas Propag., Volume 51 (2003) no. 10, pp. 2641-2651
[15] Multimode directionality in all-dielectric metasurfaces, Phys. Rev. B, Volume 95 (2017) no. 16, 165426 | DOI
[16] Effect of radiation damping on the spectral response of plasmonic components, Opt. Express, Volume 19 (2011) no. 22, pp. 21748-21753
[17] A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface, Adv. Opt. Mater., Volume 6 (2018) no. 7, 1701275
[18] Nonlinear fano-resonant dielectric metasurfaces, Nano Lett., Volume 15 (2015) no. 11, pp. 7388-7393
[19] Metasurface optics for full-color computational imaging, Sci. Adv., Volume 4 (2018) no. 2, eaar2114
[20] Helicity multiplexed broadband metasurface holograms, Nat. Commun., Volume 6 (2015), p. 8241
[21] Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency, Adv. Mater., Volume 27 (2015) no. 7, pp. 1195-1200
[22] Alternative plasmonic materials: beyond gold and silver, Adv. Mater., Volume 25 (2013) no. 24, pp. 3264-3294
[23] Wave-front transformation with gradient metasurfaces, Phys. Rev. X, Volume 6 (2016) no. 4, 041008
[24] All-dielectric metasurface analogue of electromagnetically induced transparency, Nat. Commun., Volume 5 (2014), p. 5753
[25] The fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater., Volume 9 (2010) no. 9, pp. 707-715
[26] Effects of configuration interaction on intensities and phase shifts, Phys. Rev., Volume 124 (1961) no. 6, p. 1866
[27] Fano resonances in nanoscale structures, Rev. Mod. Phys., Volume 82 (2010) no. 3, p. 2257
[28] Perspectives on the fano resonance formula, Phys. Scr., Volume 69 (2004) no. 1, C10
[29] Bound states in the continuum, Nat. Rev. Mater., Volume 1 (2016) no. 9, 16048
[30] Asymmetric metasurfaces with high-q resonances governed by bound states in the continuum, Phys. Rev. Lett., Volume 121 (2018) no. 19, 193903
[31] Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces, Optica, Volume 6 (2019) no. 8, pp. 996-1001
[32] Toroidal dipole bound states in the continuum, Phys. Rev. B, Volume 98 (2018), 161112
[33] Bound states within the radiation continuum in diffraction gratings and the role of leaky modes, New J. Phys., Volume 19 (2017) no. 9, 093011
[34] Extreme Huygens’ metasurfaces based on quasi-bound states in the continuum, Nano Lett., Volume 18 (2018) no. 12, pp. 8062-8069
[35] Broken symmetry dielectric resonators for high quality factor fano metasurfaces, ACS Photon., Volume 3 (2016) no. 12, pp. 2362-2367
[36] Dynamic bound states in the continuum, Optica, Volume 6 (2019) no. 2, pp. 169-173
[37] Multiple fano resonances in symmetry-breaking silicon metasurface for manipulating light emission, ACS Photon., Volume 5 (2018) no. 10, pp. 4074-4080
[38] Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum, Photon. Res., Volume 6 (2018) no. 7, pp. 726-733
[39] Ultrahigh-qfano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry, Adv. Opt. Mater., Volume 4 (2016) no. 3, pp. 457-463
[40] Metasurface engineering through bound states in the continuum, Phys. Rev. Appl., Volume 12 (2019) no. 1, 014024
[41] Imaging-based molecular barcoding with pixelated dielectric metasurfaces, Science, Volume 360 (2018) no. 6393, pp. 1105-1109
[42] Interfering resonances and bound states in the continuum, Phys. Rev. A, Volume 32 (1985) no. 6, p. 3231
[43] Temporal coupled-mode theory for the fano resonance in optical resonators, JOSA A, Volume 20 (2003) no. 3, pp. 569-572
[44] Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities, Phys. Rev. Lett., Volume 97 (2006) no. 25, 253901
[45] Lasing action from photonic bound states in continuum, Nature, Volume 541 (2017) no. 7636, pp. 196-199
[46] Bound states in the continuum and fano resonances in the strong mode coupling regime, Adv. Photon., Volume 1 (2019) no. 01, 016001
[47] Broadband achromatic optical metasurface devices, Nat. Commun., Volume 8 (2017) no. 1, p. 187
[48] Composite functional metasurfaces for multispectral achromatic optics, Nat. Commun., Volume 8 (2017), p. 14992
[49] Multiwavelength metasurfaces through spatial multiplexing, Sci. Rep., Volume 6 (2016), p. 32803
[50] A broadband achromatic metalens array for integral imaging in the visible, Light: Sci. Appl., Volume 8 (2019) no. 1, p. 67
[51] Dielectric gradient metasurface optical elements, Science, Volume 345 (2014) no. 6194, pp. 298-302
[52] Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging, Science, Volume 352 (2016) no. 6290, pp. 1190-1194
[53] A broadband achromatic metalens for focusing and imaging in the visible, Nat. Nanotechnol., Volume 13 (2018) no. 3, pp. 220-226
[54] Achromatic metasurface lens at telecommunication wavelengths, Nano Lett., Volume 15 (2015) no. 8, pp. 5358-5362
[55] Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules, Optica, Volume 3 (2016) no. 6, pp. 628-633
[56] Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics, Nano Lett., Volume 18 (2018) no. 12, pp. 7529-7537
[57] A broadband achromatic metalens in the visible, Nat. Nanotechnol., Volume 13 (2018) no. 3, pp. 227-232
[58] Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces, Optica, Volume 4 (2017) no. 6, pp. 625-632
[59] A review of gap-surface plasmon metasurfaces: fundamentals and applications, Nanophotonics, Volume 7 (2018) no. 6, pp. 1129-1156
[60] Generalized Kerker effects in nanophotonics and meta-optics, Opt. Express, Volume 26 (2018) no. 10, pp. 13085-13105
[61] Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission, Nat. Nanotechnol., Volume 10 (2015) no. 11, pp. 937-943
[62] Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science, Volume 334 (2011) no. 6054, pp. 333-337
[63] Metagratings: beyond the limits of graded metasurfaces for wave front control, Phys. Rev. Lett., Volume 119 (2017) no. 6, 067404
[64] From the generalized reflection law to the realization of perfect anomalous reflectors, Sci. Adv., Volume 3 (2017) no. 8, e1602714
[65] Exploitation of localized surface plasmon resonance, Adv. Mater., Volume 16 (2004) no. 19, pp. 1685-1706
[66] Optical constants of the noble metals, Phys. Rev. B, Volume 6 (1972) no. 12, p. 4370
[67] Oxides and nitrides as alternative plasmonic materials in the optical range [invited], Opt. Mater. Express, Volume 1 (2011) no. 6, pp. 1090-1099
[68] Extreme subwavelength metal oxide direct and complementary metamaterials, ACS Photon., Volume 2 (2015) no. 5, pp. 606-614
[69] Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications, Appl. Phys. B, Volume 107 (2012) no. 2, pp. 285-291
[70] Refractory plasmonics, Science, Volume 344 (2014) no. 6181, pp. 263-264
[71] Nonlinear refractory plasmonics with titanium nitride nanoantennas, Nano Lett., Volume 16 (2016) no. 9, pp. 5708-5713
[72] Wide tuning of the optical and structural properties of alternative plasmonic materials, Opt. Mater. Express, Volume 5 (2015) no. 11, pp. 2415-2430
[73] Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region, Science, Volume 352 (2016) no. 6287, pp. 795-797
[74] Dynamic reflection phase and polarization control in metasurfaces, Nano Lett., Volume 17 (2017) no. 1, pp. 407-413
[75] Dynamic transmission control based on all-dielectric Huygens metasurfaces, Optica, Volume 5 (2018) no. 7, pp. 787-792
[76] Tailor the functionalities of metasurfaces based on a complete phase diagram, Phys. Rev. Lett., Volume 115 (2015) no. 23, 235503
[77] High-efficiency dielectric Huygens’ surfaces, Adv. Opt. Mater., Volume 3 (2015) no. 6, pp. 813-820
[78] Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations, Nat. Commun., Volume 7 (2016), p. 13682
[79] Optically resonant dielectric nanostructures, Science, Volume 354 (2016) no. 6314, pp. 2956-2963
[80] Electromagnetic toroidal excitations in matter and free space, Nat. Mater., Volume 15 (2016) no. 3, pp. 263-271
[81] Magnetic and electric excitations in split ring resonators, Opt. Express, Volume 15 (2007) no. 26, pp. 17881-17890
[82] Giant magnetic field enhancement in hybridized mim structures, IEEE Photon. Technol. Lett., Volume 29 (2017) no. 24, pp. 2151-2154
[83] Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks, ACS Nano, Volume 7 (2013) no. 9, pp. 7824-7832
[84] Metamaterial-inspired silicon nanophotonics, Nat. Photon., Volume 11 (2017) no. 5, pp. 274-284
[85] Broadband high-efficiency dielectric metasurfaces for the visible spectrum, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 38, pp. 10473-10478
[86] Resonant laser printing of structural colors on high-index dielectric metasurfaces, Sci. Adv., Volume 3 (2017) no. 5, e1602487
[87] Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces, Nano Lett., Volume 16 (2016) no. 9, pp. 5426-5432
[88] Plasmonic metasurfaces for efficient phase control in reflection, Opt. Express, Volume 21 (2013) no. 22, pp. 27438-27451
[89] Advances in full control of electromagnetic waves with metasurfaces, Adv. Opt. Mater., Volume 4 (2016) no. 6, pp. 818-833
[90] Metamaterial electromagnetic wave absorbers, Adv. Mater., Volume 24 (2012) no. 23, p. OP98-OP120
[91] Metasurface holograms reaching 80% efficiency, Nat. Nanotechnol., Volume 10 (2015) no. 4, pp. 308-312
[92] An electromagnetic multipole expansion beyond the long-wavelength approximation, Opt. Commun., Volume 407 (2018), pp. 17-21
[93] Flat optics with designer metasurfaces, Nat. Mater., Volume 13 (2014) no. 2, pp. 139-150
[94] Asymmetric nanoantennas for ultrahigh angle broadband visible light bending, Nano Lett., Volume 17 (2017) no. 10, 28898084 | DOI
[95] Electromagnetics of Bi-anisotropic Materials—Theory and Application, Vol. 11, Gordon and Breach Science Publishers, 2001
[96] Perfect control of reflection and refraction using spatially dispersive metasurfaces, Phys. Rev. B, Volume 94 (2016) no. 7, 075142
[97] A metalens with a near-unity numerical aperture, Nano Lett., Volume 18 (2018) no. 3, pp. 2124-2132
[98] Large-angle, multifunctional metagratings based on freeform multimode geometries, Nano Lett., Volume 17 (2017) no. 6, pp. 3752-3757
[99] Tunable metasurfaces based on active materials, Adv. Funct. Mater., Volume 29 (2019) no. 10, 1806692
Cité par Sources :
Commentaires - Politique