Comptes Rendus
Discrete simulation of fluid dynamics
Finite-difference lattice Boltzmann simulation on acoustics-induced particle deposition
Comptes Rendus. Mécanique, Volume 343 (2015) no. 10-11, pp. 589-598.

Particle manipulation by acoustics has been investigated for many years. By a proper design, particle deposition can be induced by the same principle. The use of acoustics can potentially be developed into an energy-efficient technique for particle removal or filtration system as the pressure drop due to acoustic effects is low and the flow velocity is not necessary to be high. Two nonlinear acoustic effects, acoustic streaming and acoustic radiation pressure, are important. Acoustic streaming introduces vortices and stagnation points on the surface of an air duct and removes the particles by deposition. Acoustic radiation pressure causes particles to form agglomerates and enhances inertial impaction and/or gravitational sedimentation. The objective of this paper is to develop a numerical model to investigate the particle deposition induced by acoustic effects. A three-step approach is adopted and lattice Boltzamnn technique is employed as the numerical method. This is because the lattice Boltzmann equation is hyperbolic and can be solved locally, explicitly, and efficiently on parallel computers. In the first step, the acoustic field and its mean square fluctuation values are calculated. Due to the advantage of the lattice Boltzmann technique, a simple, stable and fast lattice Boltzmann method is proposed and verified. The result of the first step is input into the second step to solve for acoustic streaming. Another finite difference lattice Boltzmann method, which has been validated by a number of flows and benchmark cases in the literature, is used. The third step consists in tracking the particle's motion by a Lagrangian approach where the acoustic radiation pressure is considered. The influence of the acoustics effects on particle deposition is explained. The numerical result matches with an experiment. The model is a useful tool for optimizing the design and helps to further develop the technique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2015.07.012
Mots clés : Finite difference method, Lattice Boltzmann method, Acoustic streaming, Acoustic radiation pressure, Particle deposition, Filtration
Sau-Chung Fu 1, 2 ; Wai-Tung Yuen 1 ; Chili Wu 2 ; Christopher Yu-Hang Chao 1

1 Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
2 Building Energy Research Center, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Hong Kong, China
@article{CRMECA_2015__343_10-11_589_0,
     author = {Sau-Chung Fu and Wai-Tung Yuen and Chili Wu and Christopher Yu-Hang Chao},
     title = {Finite-difference lattice {Boltzmann} simulation on acoustics-induced particle deposition},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {589--598},
     publisher = {Elsevier},
     volume = {343},
     number = {10-11},
     year = {2015},
     doi = {10.1016/j.crme.2015.07.012},
     language = {en},
}
TY  - JOUR
AU  - Sau-Chung Fu
AU  - Wai-Tung Yuen
AU  - Chili Wu
AU  - Christopher Yu-Hang Chao
TI  - Finite-difference lattice Boltzmann simulation on acoustics-induced particle deposition
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 589
EP  - 598
VL  - 343
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crme.2015.07.012
LA  - en
ID  - CRMECA_2015__343_10-11_589_0
ER  - 
%0 Journal Article
%A Sau-Chung Fu
%A Wai-Tung Yuen
%A Chili Wu
%A Christopher Yu-Hang Chao
%T Finite-difference lattice Boltzmann simulation on acoustics-induced particle deposition
%J Comptes Rendus. Mécanique
%D 2015
%P 589-598
%V 343
%N 10-11
%I Elsevier
%R 10.1016/j.crme.2015.07.012
%G en
%F CRMECA_2015__343_10-11_589_0
Sau-Chung Fu; Wai-Tung Yuen; Chili Wu; Christopher Yu-Hang Chao. Finite-difference lattice Boltzmann simulation on acoustics-induced particle deposition. Comptes Rendus. Mécanique, Volume 343 (2015) no. 10-11, pp. 589-598. doi : 10.1016/j.crme.2015.07.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.012/

[1] D. Thomas; P. Contal; V. Renaudin; P. Penicot; D. Leclerc; J. Vendel Modelling pressure drop in HEPA filters during dynamic filtration, J. Aerosol Sci., Volume 30 (1999) no. 2, pp. 235-246

[2] W.B. Faulkner; B.W. Shaw Efficiency and pressure drop of cyclones across a range of inlet velocities, App. Eng. Agric., Volume 22 (2006) no. 1, pp. 155-161

[3] C.M. Jang; D.W. Kim; S.Y. Lee Performance characteristics of turbo blower in a refuse collecting system according to operation conditions, J. Mech. Sci. Technol., Volume 22 (2008) no. 10, pp. 1896-1901

[4] W.T. Yuen; S.C. Fu; J.K.C. Kwan; C.Y.H. Chao The use of nonlinear acoustics as an energy-efficient technique for aerosol removal, Aerosol Sci. Technol., Volume 48 (2014) no. 9, pp. 907-915

[5] W.L. Nyborg Acoustic streaming, Phys. Acoust., Volume 2 (1965) no. PtB, p. 265

[6] J. Lighthill Acoustic streaming, J. Sound Vib., Volume 61 (1978) no. 3, pp. 391-418

[7] L.V. King On the acoustic radiation pressure on spheres, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 147 (1934) no. 861, pp. 212-240

[8] L.P. Gorḱov On the forces acting on a small particle in an acoustical field and ideal fluid, Sov. Phys. Dokl., Volume 6 (1962) no. 9, pp. 773-775

[9] J. Gallego-Juárez; E. Riera; G. RodrÍguez; T. Hoffmann; J. Gálvez; J. RodrÍguez; F. Gómez-Moreno; A. Bahillo-Ruiz; M. MartÍn-Espigares; M. Acha Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants, Environ. Sci. Technol., Volume 33 (1999) no. 21, pp. 3843-3849

[10] J.D. Sterling; S. Chen Stability analysis of lattice Boltzmann methods, J. Comput. Phys., Volume 123 (1996), pp. 196-206

[11] S. Chen; G.D. Doolen Lattice Boltzamnn method for fluid flows, Annu. Rev. Fluid Mech., Volume 30 (1998), pp. 329-364

[12] D.A. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction, Springer-Verlag, Berlin, 2000 (Chap. 5)

[13] S.C. Fu; W.W.F. Leung; R.M.C. So A lattice Boltzmann method based numerical scheme for microchannel flows, J. Fluids Eng., Volume 131 (2009)

[14] X. He; L.S. Luo Lattice Boltzmann model for the incompressible Navier–Stokes equation, J. Stat. Phys., Volume 88 (1997), pp. 927-944

[15] S.C. Fu; R.M.C. So; W.W.F. Leung Stochastic finite difference lattice Boltzmann method for steady incompressible viscous flows, J. Comput. Phys., Volume 229 (2010), pp. 6084-6103

[16] S.C. Fu; R.M.C. So; W.W.F. Leung Linearized-Boltzmann-type-equation-based finite difference method for thermal incompressible flow, Comput. Fluids, Volume 69 (2012), pp. 67-80

[17] S.C. Fu; W.W.F. Leung; R.M.C. So A lattice Boltzmann and immersed boundary scheme for model blood flow in constricted pipes: part 1 – steady flow, Commun. Comput. Phys., Volume 14 (2013) no. 1, pp. 126-152

[18] G.H.R. Kefayati FDLBM simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a linearly heated cavity, Powder Technol., Volume 256 (2014), pp. 87-99

[19] G.H.R. Kefayati Mesoscopic simulation of double-diffusive mixed convection of Pseudoplastic fluids in an enclosure with sinusoidal boundary conditions, Comput. Fluids, Volume 97 (2014), pp. 94-109

[20] L. Rayleigh On the circulation of air observed in Kundt's tubes, and on some allied acoustical problems, Philos. Trans. R. Soc. Lond., Volume 175 (1884), pp. 1-21

[21] C.Y.H. Chao; M.P. Wan A study of the dispersion of expiratory aerosols in unidirectional downward and ceiling-return type airflows using a multiphase approach, Indoor Air, Volume 16 (2006), pp. 296-312

[22] C.Y.H. Chao; M.P. Wan; G.N. Sze To Transport and removal of expiratory droplets in hospital ward environment, Aerosol Sci. Technol., Volume 42 (2008), pp. 377-394

[23] A. Li; G. Ahmadi Dispersion and deposition of spherical particles from point sources in a turbulent channel flow, Aerosol Sci. Technol., Volume 16 (1992), pp. 209-226

[24] P.D. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math., Volume 7 (1954), pp. 159-193

[25] F. Balboa Usabiaga; R. Delgado-Buscalioni Minimal model for acoustic forces on Brownian particles, Phys. Rev. E, Volume 88 (2013)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Influence de l'acoustic streaming sur la stabilité d'une couche de fluide isotherme ou chauffée latéralement

Walid Dridi; Daniel Henry; Hamda BenHadid

C. R. Méca (2007)


Three-dimensional ultrasonic colloidal crystals

Mihai Caleap; Bruce W. Drinkwater

C. R. Phys (2016)


Influence de l'acoustic streaming sur les instabilités affectant une couche de fluide chauffée latéralement

Walid Dridi; Daniel Henry; Hamda BenHadid

C. R. Méca (2009)