For linear composite conductors, it is known that the celebrated Hashin–Shtrikman bounds can be recovered by the translation method. We investigate whether the same conclusion extends to nonlinear composites in two dimensions. To that purpose, we consider two-phase composites with perfectly conducting inclusions. In that case, explicit expressions of the various bounds considered can be obtained. The bounds provided by the translation method are compared with the nonlinear Hashin–Shtrikman-type bounds delivered by the Talbot–Willis (1985) [2] and the Ponte Castañeda (1991) [3] procedures.
Accepted:
Published online:
Michaël Peigney 1
@article{CRMECA_2017__345_5_353_0, author = {Micha\"el Peigney}, title = {On {Hashin{\textendash}Shtrikman-type} bounds for nonlinear conductors}, journal = {Comptes Rendus. M\'ecanique}, pages = {353--361}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2017}, doi = {10.1016/j.crme.2017.02.006}, language = {en}, }
Michaël Peigney. On Hashin–Shtrikman-type bounds for nonlinear conductors. Comptes Rendus. Mécanique, Volume 345 (2017) no. 5, pp. 353-361. doi : 10.1016/j.crme.2017.02.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.02.006/
[1] A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys., Volume 33 (1962), pp. 3125-3131
[2] Variational principles for inhomogeneous non-linear media, IMA J. Appl. Math., Volume 35 (1985), pp. 39-54
[3] The effective mechanical properties of nonlinear isotropic solids, J. Mech. Phys. Solids, Volume 39 (1991), pp. 45-71
[4] On characterizing the set of possible effective tensors of composites: the variational method and the translation method, Commun. Pure Appl. Math., Volume 43 (1990), pp. 63-125
[5] Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. R. Soc. Edinb. A, Volume 99 (1984), pp. 71-87
[6] F. Murat, L. Tartar, Calcul des variations et homogénéisation, in: D. Bergman, Jacques-Louis Lions, George Papanicolaou, F. Murat, L. Tartar, E. Sanchez-Palencia (Eds.), Les méthodes de l'homogénéisation: théorie et applications en physique, École d'été d'analyse numérique, Collection Direction des études et recherches d'électricité de France, EDF, Eyrolles, 1985.
[7] Energy minimization and the recoverable strains in polycrystalline shape memory alloys, Arch. Ration. Mech. Anal., Volume 139 (1997), pp. 99-180
[8] Bounding the current in nonlinear conducting composites, J. Mech. Phys. Solids, Volume 48 (2000), pp. 1295-1324
[9] Bounds for the effective constitutive relation of a nonlinear composite, Proc. R. Soc. Lond. A, Volume 460 (2004), pp. 2705-2723
[10] A pattern-based method for bounding the effective response of a nonlinear composite, J. Mech. Phys. Solids, Volume 53 (2005), pp. 923-948
[11] Recoverable strains in composite shape-memory alloys, J. Mech. Phys. Solids, Volume 56 (2008), pp. 360-375
[12] Improved bounds on the energy-minimizing strains in martensitic polycrystals, Contin. Mech. Thermodyn., Volume 28 (2016), pp. 923-946
[13] Translation and related bounds for the response of a nonlinear composite conductor, Proc. R. Soc. Lond. A, Volume 455 (1999), pp. 3687-3707
[14] Some three-dimensional problems related to dielectric breakdown and polycrystal plasticity, Proc. R. Soc. Lond. A, Volume 459 (2003), pp. 2613-2625
[15] The effective behavior of nonlinear composites: a comparison between two methods, Mater. Sci. Forum, Volume 123 (1993), pp. 351-360
[16] Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, Volume 11 (1963), pp. 357-372
[17] Variational estimates for the overall response of an inhomogeneous nonlinear dielectric, Homogenization and Effective Moduli of Materials and Media, Springer, 1986
[18] Bounds and estimates for the properties of nonlinear heterogeneous systems, Philos. Trans. R. Soc. Lond. A, Volume 340 (1992), pp. 531-567
[19] Convex Analysis, Princeton Math. Ser., 1970
[20] Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1972
[21] Bounds for nonlinear composite conductors via the translation method, J. Mech. Phys. Solids (2017), pp. 93-117
Cited by Sources:
Comments - Policy