Comptes Rendus
The legacy of Jean-Jacques Moreau in mechanics
Helicity and other conservation laws in perfect fluid motion
Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 175-183.

In this review paper, we discuss helicity from a geometrical point of view and see how it applies to the motion of a perfect fluid. We discuss its relation with the Hamiltonian structure, and then its extension to arbitrary space dimensions. We also comment about the existence of additional conservation laws for the Euler equation, and its unlikely integrability in Liouville's sense.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2017.12.001
Keywords: Perfect fluid, Poisson structure, Helicity

Denis Serre 1

1 UMR 5669 CNRS, École normale supérieure de Lyon, 46, allée d'Italie, 69364 Lyon cedex 07, France
@article{CRMECA_2018__346_3_175_0,
     author = {Denis Serre},
     title = {Helicity and other conservation laws in perfect fluid motion},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {175--183},
     publisher = {Elsevier},
     volume = {346},
     number = {3},
     year = {2018},
     doi = {10.1016/j.crme.2017.12.001},
     language = {en},
}
TY  - JOUR
AU  - Denis Serre
TI  - Helicity and other conservation laws in perfect fluid motion
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 175
EP  - 183
VL  - 346
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2017.12.001
LA  - en
ID  - CRMECA_2018__346_3_175_0
ER  - 
%0 Journal Article
%A Denis Serre
%T Helicity and other conservation laws in perfect fluid motion
%J Comptes Rendus. Mécanique
%D 2018
%P 175-183
%V 346
%N 3
%I Elsevier
%R 10.1016/j.crme.2017.12.001
%G en
%F CRMECA_2018__346_3_175_0
Denis Serre. Helicity and other conservation laws in perfect fluid motion. Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 175-183. doi : 10.1016/j.crme.2017.12.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.12.001/

[1] J.-J. Moreau Constantes d'un îlot tourbillonnaire en fluide parfait barotrope, C. r. hebd. séances Acad. sci. Paris, Volume 252 (1961), pp. 2810-2812

[2] H.K. Moffatt The degree of knottedness of tangled vortex lines, J. Fluid Mech., Volume 35 (1969), pp. 117-129

[3] H.K. Moffatt; R.L. Ricca Helicity and the Călugăreanu invariant, Proc. R. Soc. Lond. A, Volume 439 (1992), pp. 411-429

[4] L. Lichtenstein Über einige Existensprobleme der Hydrodynamik homogener unzusammendrückbarer reibunglosser Flüssigkeiten und die Helmoltzschen Wirbelsätze, zweite Abhanlung, Math. Z., Volume 23 (1925), pp. 89-154

[5] W. Wolibner Un théorème sur l'existence d'un mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z., Volume 37 (1933), pp. 698-726

[6] V.I. Yudovich Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. Mat. Fiz., Volume 3 (1963), pp. 1032-1066 (in Russian)

[7] J.-Y. Chemin Perfect Incompressible Fluids, Oxford Lecture Series in Maths & Its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998

[8] D. Serre Les invariants du premier ordre de l'équation d'Euler en dimension trois, Physica D, Volume 13 (1984), pp. 105-136

[9] P.J. Olver On the Hamiltonian structure of evolution equations, Math. Proc. Camb. Philos. Soc., Volume 88 (1980), pp. 71-88

[10] D. Serre Invariants et dégénérescence symplectique de l'équation d'Euler des fluides parfaits incompressibles, C. R. Acad. Sci. Paris, Ser. A, Volume 298 (1984), pp. 349-352

[11] V.I. Arnold; B.A. Khesin Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, 1999

[12] B.A. Khesin; Yu.V. Chekanov Invariants of the Euler equations for ideal or barotropic hydrodynamics and superconductivity in D dimensions, Physica D, Volume 40 (1989), pp. 119-131

[13] P.J. Olver A nonlinear Hamiltonian structure for the Euler equations, J. Math. Anal. Appl., Volume 89 (1982), pp. 233-250

[14] Yu.I. Manin Algebraic aspects of nonlinear differential equations, J. Sov. Math., Volume 11 (1979), pp. 1-122

[15] I.M. Gel'fand; I.Ya. Dorfman Hamiltonian operators and related algebraic structures, Funkc. Anal. Prilozh., Volume 13 (1979), pp. 248-262 ([in Russian])

[16] E.A. Kudryavtseva Helicity is the only invariant of incompressible flows whose derivative is continuous in C1-topology, Mat. Zametki, Volume 99 (2016), pp. 626-630 ([in Russian]. English translation: Math. Notes, 99, 2016, pp. 611-615)

[17] A. Enciso; D. Peralta-Salas; F. Torres de Lizaur Helicity is the only integral invariant of volume-preserving transformations, Proc. Natl. Acad. Sci. USA, Volume 113 (2016), pp. 2035-2040

[18] G.-H. Cottet; P.D. Koumoutsakos Vortex Methods. Theory and Practice, Cambridge University Press, Cambridge, UK, 2000

[19] S.L. Ziglin The nonintegrability of the problem of the motion of four vortices of finite strengths, Physica D, Volume 4 ( 1981–1982 ), pp. 261-269 (Appendix to K.M. Khanin, Quasiperiodic motions of vortex systems)

[20] D. Serre Écoulement parfait incompressible à rotationnel croissant avec le temps, C. R. Acad. Sci. Paris, Ser. A, Volume 312 (1991), pp. 315-318

[21] D. Serre La croissance de la vorticité dans les écoulements parfaits incompressibles, C. R. Acad. Sci. Paris, Ser. A, Volume 328 (1999), pp. 549-552

[22] J. Bedrossian; N. Masmoudi Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations, Publ. Math. IHÉS, Volume 122 (2015), pp. 195-300

[23] L. Kelvin Stability of fluid motion-rectilinear motion of viscous fluid between two parallel plates, Philos. Mag., Volume 24 (1887), p. 188

[24] W. Orr The stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquid, Proc. R. Ir. Acad., A Math. Phys. Sci., Volume 27 (1907), pp. 9-68

[25] D. Serre Solutions classiques globales des équations d'Euler pour un fluide parfait compressible, Ann. Inst. Fourier (Grenoble), Volume 47 (1997), pp. 139-153

[26] M. Grassin Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J., Volume 47 (1998), pp. 1397-1432

[27] D. Serre Expansion of a compressible gas in vacuum, Bull. Inst. Math. Acad. Sin., Taiwan, Volume 10 (2015), pp. 695-716

[28] V.I. Arnold The asymptotic Hopf invariant and its applications, Sel. Math. Sov., Volume 5 (1986), pp. 327-345

Cited by Sources:

Comments - Policy