In this review paper, we discuss helicity from a geometrical point of view and see how it applies to the motion of a perfect fluid. We discuss its relation with the Hamiltonian structure, and then its extension to arbitrary space dimensions. We also comment about the existence of additional conservation laws for the Euler equation, and its unlikely integrability in Liouville's sense.
Accepted:
Published online:
Denis Serre 1
@article{CRMECA_2018__346_3_175_0, author = {Denis Serre}, title = {Helicity and other conservation laws in perfect fluid motion}, journal = {Comptes Rendus. M\'ecanique}, pages = {175--183}, publisher = {Elsevier}, volume = {346}, number = {3}, year = {2018}, doi = {10.1016/j.crme.2017.12.001}, language = {en}, }
Denis Serre. Helicity and other conservation laws in perfect fluid motion. Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 175-183. doi : 10.1016/j.crme.2017.12.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.12.001/
[1] Constantes d'un îlot tourbillonnaire en fluide parfait barotrope, C. r. hebd. séances Acad. sci. Paris, Volume 252 (1961), pp. 2810-2812
[2] The degree of knottedness of tangled vortex lines, J. Fluid Mech., Volume 35 (1969), pp. 117-129
[3] Helicity and the Călugăreanu invariant, Proc. R. Soc. Lond. A, Volume 439 (1992), pp. 411-429
[4] Über einige Existensprobleme der Hydrodynamik homogener unzusammendrückbarer reibunglosser Flüssigkeiten und die Helmoltzschen Wirbelsätze, zweite Abhanlung, Math. Z., Volume 23 (1925), pp. 89-154
[5] Un théorème sur l'existence d'un mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z., Volume 37 (1933), pp. 698-726
[6] Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. Mat. Fiz., Volume 3 (1963), pp. 1032-1066 (in Russian)
[7] Perfect Incompressible Fluids, Oxford Lecture Series in Maths & Its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998
[8] Les invariants du premier ordre de l'équation d'Euler en dimension trois, Physica D, Volume 13 (1984), pp. 105-136
[9] On the Hamiltonian structure of evolution equations, Math. Proc. Camb. Philos. Soc., Volume 88 (1980), pp. 71-88
[10] Invariants et dégénérescence symplectique de l'équation d'Euler des fluides parfaits incompressibles, C. R. Acad. Sci. Paris, Ser. A, Volume 298 (1984), pp. 349-352
[11] Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, 1999
[12] Invariants of the Euler equations for ideal or barotropic hydrodynamics and superconductivity in D dimensions, Physica D, Volume 40 (1989), pp. 119-131
[13] A nonlinear Hamiltonian structure for the Euler equations, J. Math. Anal. Appl., Volume 89 (1982), pp. 233-250
[14] Algebraic aspects of nonlinear differential equations, J. Sov. Math., Volume 11 (1979), pp. 1-122
[15] Hamiltonian operators and related algebraic structures, Funkc. Anal. Prilozh., Volume 13 (1979), pp. 248-262 ([in Russian])
[16] Helicity is the only invariant of incompressible flows whose derivative is continuous in -topology, Mat. Zametki, Volume 99 (2016), pp. 626-630 ([in Russian]. English translation: Math. Notes, 99, 2016, pp. 611-615)
[17] Helicity is the only integral invariant of volume-preserving transformations, Proc. Natl. Acad. Sci. USA, Volume 113 (2016), pp. 2035-2040
[18] Vortex Methods. Theory and Practice, Cambridge University Press, Cambridge, UK, 2000
[19] The nonintegrability of the problem of the motion of four vortices of finite strengths, Physica D, Volume 4 ( 1981–1982 ), pp. 261-269 (Appendix to K.M. Khanin, Quasiperiodic motions of vortex systems)
[20] Écoulement parfait incompressible à rotationnel croissant avec le temps, C. R. Acad. Sci. Paris, Ser. A, Volume 312 (1991), pp. 315-318
[21] La croissance de la vorticité dans les écoulements parfaits incompressibles, C. R. Acad. Sci. Paris, Ser. A, Volume 328 (1999), pp. 549-552
[22] Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations, Publ. Math. IHÉS, Volume 122 (2015), pp. 195-300
[23] Stability of fluid motion-rectilinear motion of viscous fluid between two parallel plates, Philos. Mag., Volume 24 (1887), p. 188
[24] The stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquid, Proc. R. Ir. Acad., A Math. Phys. Sci., Volume 27 (1907), pp. 9-68
[25] Solutions classiques globales des équations d'Euler pour un fluide parfait compressible, Ann. Inst. Fourier (Grenoble), Volume 47 (1997), pp. 139-153
[26] Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J., Volume 47 (1998), pp. 1397-1432
[27] Expansion of a compressible gas in vacuum, Bull. Inst. Math. Acad. Sin., Taiwan, Volume 10 (2015), pp. 695-716
[28] The asymptotic Hopf invariant and its applications, Sel. Math. Sov., Volume 5 (1986), pp. 327-345
Cited by Sources:
Comments - Policy